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SUMMARY

Artificial propagation, especially the use of production hatcheries, has been a
prominent feature of fisheries enhancement efforts for Pacific salmon for several
decades. Recently, the decline of many natural populations has prompted the
development of another role for artificial propagation: assisting in the conservation
of salmon populations. This paper outlines considerations of artificially propagated
Pacific salmon during the listing and recovery of threatened and endangered
species under the Endangered Species Act (ESA).

The primary objective of the ESA is the conservation of species in their natural
ecosystems. Therefore, the evaluation of a species' status for listing or delisting
under the ESA focuses on natural populations, which for Pacific salmon are
defined as the progeny of naturally reproducing fish. If determined to be similar to
the natural spawning population that represents an evolutionarily significant unit



(ESU) of a Pacific salmon species in characteristics believed to have a genetic
basis, artificially propagated fish can be considered part of the ESU and used in the
recovery of the population. However, a variety of factors may cause appreciable
changes in artificially propagated fish relative to a natural population. In such
cases, or if substantial uncertainty exists about the effects of artificial propagation,
artificially propagated fish will generally not be included in the ESU.

Because of the potential for circumventing the high rates of early mortality
typically experienced in the wild, artificial propagation may be useful in the
recovery of listed salmon species. However, artificial propagation entails risks as
well as opportunities for salmon conservation, and its ability to supplement and
restore natural populations of Pacific salmon is largely unproven. Despite the fact
that many artificial propagation programs for Pacific salmon have succeeded in
producing fish for harvest, supplementation programs involving artificial
propagation have generally not increased the abundance of natural fish.

Therefore, the use of artificial propagation for the recovery of Pacific salmon
requires careful consideration. The major constraints governing the use of artificial
propagation in ESA recovery programs should be the maintenance of genetic and
ecological integrity and diversity in listed species. In keeping with these objectives,
this paper provides general guidelines for the selection, collection, and mating of
broodstock and the rearing and release of artificially propagated fish as part of a
recovery program for a listed species. More specific guidelines are difficult to
formulate because many critical uncertainties about the effectiveness of
supplementation techniques are presently unresolved and because the value of
specific guidelines may be highly case-dependent. Intensive monitoring and
evaluation of activities associated with artificial propagation are likely to be
essential to fully evaluate the impacts of such a program on natural fish.

Artificial propagation of a listed species is not a substitute for remedying the
factors causing or contributing to the initial decline, and recovery programs should
reflect integrated planning that addresses these factors. In considering recovery
options, an objective assessment of potential risks should be undertaken and
management techniques requiring less intervention should be evaluated before
initiating artificial propagation. As a conservation tool, artificial propagation of
salmon should be designed to maintain the inherent distinctiveness of species and
protect the viability of threatened and endangered species during the recovery
process.

Artificial propagation of unlisted species should be conducted to minimize adverse
impacts to listed and unlisted species. The liberation of large numbers of fish
genetically distinct from natural fish and the impacts of mixed-stock fisheries



associated with this enhancement may have profound consequences for the
viability of some distinct populations, including loss of genetic integrity and
ecological diversity, increased competition, and elevated levels of harvest and
natural predation. Management practices involving widespread transplantation of
nonlocal stocks may also further endanger listed species or contribute to the
decline of unlisted species. Continued artificial propagation of unlisted species
must minimize the potential for deleterious effects on both listed and unlisted
species if it is to be consistent with the maintenance of genetic and ecological
diversity in Pacific salmon.

I. ARTIFICIAL PROPAGATION AND THE GOALS OF
THE ENDANGERED SPECIES ACT

The Endangered Species Act (ESA, Act) of 1973 was enacted in recognition that
"various species of fish, wildlife, and plants in the United States have been
rendered extinct as a consequence of economic growth untempered by adequate
concern and conservation" (ESA, as amended (16 U.S.C. 1531 et seq.), Sec. 2(a)).
In passing the ESA, Congress acknowledged that these species are of "esthetic,
ecological, educational, historical, recreational, and scientific value to the Nation
and its people" (Sec. 2(a)). As stated in the Act, its purposes are

to provide a means whereby the ecosystems upon which endangered
species and threatened species depend may be conserved, to provide
a program for the conservation of such endangered species and
threatened species, and to take such steps as may be appropriate to
achieve [these] purposes.... (Sec. 2(b), emphasis added).

The ESA thus mandates the restoration of threatened and endangered species in
their natural habitats to a level at which they can sustain themselves without further
legal protection. For Pacific salmon (Footnote 1) (Oncorhynchus spp.), the ESA's
focus is therefore on natural populations--the progeny of naturally spawning
fish--and the ecosystems upon which they depend.

Despite this emphasis on maintaining species in their natural habitat, the Act
recognizes that conservation of listed species may be facilitated by artificial means.
The ESA defines conservation to include

...the use of all methods and procedures which are necessary to bring
any endangered species or threatened species to the point at which the
measures provided pursuant to this Act are no longer necessary. Such
methods and procedures include, but are not limited to, all activities
associated with scientific resources management such as research,



census, law enforcement, habitat acquisition and maintenance,
propagation, live trapping, and transplantation.... (Sec. 3(3),
emphasis added).

Artificial propagation has been an important element in recovery plans for several
species, including plants such as Knowlton's cactus (Pediocactus knowltonii) and
Kearney's bluestar (Amsonia kearneyana), birds such as the peregrine falcon
(Falco peregrinus) and the California condor (Gymnogyps californianus),
mammals such as the black-footed ferret (Mustela nigripes), and several fishes,
including pupfishes (Cyprinodon spp.), chubs (Gila spp.), and trouts
(Oncorhynchus spp.). The California condor and the black-footed ferret currently
exist largely as captive populations, although some individuals remained in the
wild at the time of listing. In the case of the peregrine falcon, interagency
cooperation and extensive experience in captively rearing and releasing raptors to
the wild contributed to the successful recovery of this species (Cade 1988).

It should not automatically be presumed, however, that artificial propagation will
help to conserve a listed species. For example, in Cayman Turtle Farm v. Andrus
(478 F. Supp. 125 (D.D.C. 1979)), the court rejected the plaintiff's claim that a ban
on mariculture is contrary to the ESA mandate to encourage the propagation of
protected wildlife under 16 U.S.C. 1532(2) and 1539(a). The court concluded that
evidence in the record supported a finding that the expected long-term impact of
mariculture "would be detrimental to the prospects for the survival of wild sea
turtles" (Cayman Turtle Farm 478 F. Supp. 132).

With respect to Pacific salmon, there is considerable experience in the use of
artificial propagation for fisheries enhancement. Because Pacific salmon have a
moderately high fecundity (typically several thousand eggs per female) and a high
natural mortality through the early life-history stages, successful fish hatcheries
can generally produce many more juveniles than are produced in the wild.
Increased juvenile production may (but does not always) result in increased returns
of adult fish. However, the efficacy of artificial propagation as a tool for
conserving natural salmon populations has not been clearly demonstrated. Indeed,
the success of artificial propagation for supplementation (i.e., the use of hatchery
fish to increase the abundance of naturally spawning fish) is highly controversial
(Miller et al. 1990, Steward and Bjornn 1990, Cuenco 1991).

The impact of artificial propagation on the total production of Pacific salmon has
been extensive. Past management practices have resulted in widespread
propagation and transplantation of nonlocal stocks of these fish (Mathews 1980,
Washington 1985, Lichatowich and McIntyre 1987), and the impacts of these
practices are largely unknown. Although artificial propagation may contribute to



the conservation of populations now listed as threatened or endangered, it is
unclear whether or how much artificial propagation during the recovery process
will compromise the distinctiveness of natural populations. Also unclear is whether
or how much ongoing hatchery programs for unlisted species will affect the
recovery of listed species or the viability of other unlisted species.

This document considers the possible roles of artificial propagation with respect to
the status and recovery of Pacific salmon under the ESA. The next section (Part II)
outlines evaluations of the status of artificially propagated species during the
listing and delisting processes. The two subsequent sections deal with the scope of
artificial propagation during the recovery of threatened and endangered species;
Part III discusses factors to consider in contemplating the use of artificial
propagation in recovery programs, and Part IV provides guidelines for the
implementation of artificial propagation if it is used. Finally, Part V summarizes
considerations for the artificial propagation of unlisted species and its potential
effects on both listed and unlisted species.

II. STATUS OF ARTIFICIALLY PROPAGATED SALMON
IN ENDANGERED SPECIES ACT LISTINGS

To be considered for listing under the ESA, a group of organisms must constitute a
"species," which for Pacific salmon and other vertebrates is defined by the Act to
include "any distinct population segment...which interbreeds when mature" (ESA,
Sec. 3(15)). The National Marine Fisheries Service (NMFS) has determined that,
to qualify as a distinct population segment, a Pacific salmon population must be
substantially reproductively isolated and represent an important component in the
evolutionary legacy of the biological species. A Pacific salmon population meeting
these criteria is considered to be an evolutionarily significant unit (ESU: 56 FR
58612, November 20, 1991; Waples 1991a). The ESU concept recognizes that
long-term species viability depends on the maintenance of genetic variability
within the biological species (Meffe 1986, Nelson and Soul‚ 1987). The use of
artificial propagation to restore salmon abundance should not be allowed to cause
the loss of this diversity.

Because of the focus in the Act on conserving both species and their native
ecosystems, an ESU for Pacific salmon is defined on the basis of a natural
population (Waples 1991a). A history of hatchery influence does not necessarily
preclude protection of a natural salmon population under the ESA, however.
Whether a population with hatchery influence qualifies for ESA protection should
be determined solely by the two criteria that define an ESU--its reproductive
isolation and its contribution to the biological species' evolutionary legacy. See



Waples (1991a) for further discussion of this topic.

Once an ESU has been defined on the basis of a natural population, the status of
any hatchery fish (Footnote 2) associated with that ESU must be addressed. This
issue will arise frequently because artificial propagation has been such a pervasive
factor with Pacific salmon for many years.

A key feature of the ESU concept is recognition of the importance of conserving
genetic resources that represent the evolutionary legacy of the biological species.
These genetic resources may reside in hatchery fish as well as in naturally
reproducing fish. Therefore, hatchery fish may be considered to be part of an ESU
defined on the basis of a natural population. If included in the ESU of a listed
species, hatchery fish would be protected under the Act and could be used in a
recovery program. Alternatively, hatchery fish can be excluded from the ESU, in
which case they should be kept as separate as possible from the fish in the ESU to
minimize effects on the listed species.

In defining the extent of an ESU with respect to hatchery fish, two types of risk
should be evaluated. A too-restrictive definition for an ESU risks excluding
important genetic resources and may limit recovery options. Conversely, an overly
inclusive definition of an ESU may result in a heterogeneous entity and loss of
population distinctiveness. Either type of error may adversely affect the viability or
population structure of the listed species. Defining the extent of an ESU in this
context is a complex task even under the best of circumstances; in practice,
incomplete or ambiguous information often makes the process even more difficult.
Nevertheless, the following guidelines provide a general framework for making
this determination.

The chief issue in deciding whether or not to include hatchery fish in an ESU is
whether, on the basis of all available information, there are appreciable differences
between the hatchery and natural fish in characteristics believed to have a genetic
basis. In evaluating whether differences are "appreciable," a relevant question to
ask is, If the fish in the hatchery were restored to the wild, with the likely result
being direct and indirect interactions between the two groups, would this be a
benefit or a detriment to the listed species? Appreciable differences between these
groups may produce detrimental interactions. The extent and consequences of
genetic change in hatchery salmon are imperfectly understood, but important
factors to consider in this regard are the length of time the hatchery population has
been domesticated; the incidence of straying by hatchery fish into the wild and the
degree to which natural broodstock has been regularly used in the hatchery; the
stock history of the hatchery population, including evidence for importation of fish
or eggs from other stocks; attention to genetic considerations in selecting and



mating broodstock; and evidence for divergence of the hatchery population from
the wild phenotype in characteristics that are thought to have a genetic basis (e.g.,
size and age at return, spawning date, etc.). For example, characteristics of fish
with hatchery experience may differ from those of their natural counterparts (e.g.,
Reisenbichler and McIntyre 1977, Swain et al. 1991, Fleming and Gross 1992). If
the differences are substantial, hatchery fish should be excluded from the ESU. In
considering this issue, the burden of proof should lie in showing that inclusion of
hatchery fish is consistent with recovery objectives.

Hatchery fish associated with an ESU that are found to be similar to natural fish in
the ESU in characteristics believed to be genetically based can be included in it, in
which case they would be protected by provisions of the Act. Progeny of these
hatchery fish would also be included in the ESU and protected. The purpose of
artificially propagating these fish should be to facilitate recovery of the listed
species; therefore, the goal of such a program must be to restore the natural
spawning population to the point at which it no longer requires protection under
the Act (see Part III).

If an existing hatchery population is not included in the ESU of a listed species
because of one or more of the above considerations, isolation of hatchery and
natural fish should be as complete as possible. In this case, isolation would include
a prohibition against taking natural broodstock from the ESU into the hatchery for
use with the current population. Because the adverse consequences of genetic
interactions are likely to increase with the degree of genetic divergence between
these groups (Hindar et al. 1991, Waples 1991b), such a hatchery should be
operated to minimize the possibility of straying into the natural population. Other
aspects of hatchery programs that may directly affect a listed species include
competition, predation, and disease transfer. Possible indirect effects of hatchery
operations include increased harvest rates and increased populations of predators
induced by an abundance of hatchery fish (Allendorf et al. 1987, Li et al. 1987,
Steward and Bjornn 1990).

In some cases, incomplete or conflicting data will result in a substantial degree of
uncertainty about the relationship between a natural population and associated
hatchery fish. In that event, hatchery fish should generally be excluded from the
ESU unless there is a compelling reason for their inclusion. An example of a
compelling reason might be a high imminent risk of extinction or irreversible harm
faced by the natural population. This approach maintains the focus of conservation
on the viability of the natural population, while permitting the use of existing
hatchery fish in a recovery plan if the hatchery fish otherwise qualify as part of the
ESU and if circumstances clearly warrant it. Regardless of the relationship of



hatchery fish to the ESU, evaluations of the status of the ESU in listing and
delisting determinations will depend on the viability of the population in the
natural habitat (Waples 1991a) and on the status of ongoing conservation
measures.

If possible, the relationship of hatchery fish to the ESU should be determined at the
time of listing. Information necessary for making that determination may not be
available at listing, however. If information that becomes available after listing
(e.g., more comprehensive genetic data) indicates that previously excluded
hatchery fish should be incorporated into the ESU, these fish can be included as a
component of the listed species and be part of its recovery plan.

III. CONSIDERATION OF ARTIFICIAL PROPAGATION
IN ENDANGERED SPECIES ACT RECOVERY PLANS

Artificial propagation of Pacific salmon may be consistent with the purposes of the
Endangered Species Act in two situations: 1) when artificial propagation facilitates
the recovery of a listed species, or 2) when the enhancement of unlisted
populations does not impede the recovery of a listed species or compromise the
viability or distinctiveness (and hence be a factor in the listing) of an unlisted
species. In either case, the proper management of hatchery operations is essential
to minimize adverse effects on listed species. The discussion in this section
addresses the question whether to use artificial propagation as a recovery tool for
listed species. Guidelines for how to use artificial propagation in a recovery
program (assuming that a decision has been made to do so) are discussed in Part
IV. Guidelines for the artificial propagation of unlisted species in relation to the
ESA are outlined in Part V.

In deciding whether to use artificial propagation in a recovery program, a key
factor to consider is the likelihood that artificial propagation will actually benefit
the listed species (Waples 1991b). This evaluation must be made on a case-by-case
basis. Although artificial propagation of Pacific salmon has been carried out on a
large scale for several decades, almost all these efforts have been directed at
fisheries enhancement. Attempts to increase natural production through the use of
artificial propagation is a relatively recent enterprise that has, to date, produced
mixed results (Miller 1990). Therefore, the use of artificial propagation in ESA
recovery plans should be viewed as an experimental technique.

Deliberations over the use of artificial propagation for recovery must also
recognize the potential for deleterious direct and indirect effects of this practice on
the listed species. Because there is at present considerable uncertainty about the



effectiveness of supplementation (see Miller 1990), and because supplementation
may have profound consequences for the viability of natural salmon populations,
consideration of its use should be based on an objective assessment of potential
risks. Genetic risks to listed species from artificial propagation include extinction,
loss of genetic variability within and among populations, and domestication
(Busack 1990, Riggs 1990). Ecological risks to listed species include disease
transfer; increased competition for food, habitat, or mates; increased predation;
altered migration; and displacement of natural fish (Steward and Bjornn 1990, see
also Regional Assessment of Supplementation Project 1992). Possible
consequences of these factors are maladaptive genetic, physiological, or behavioral
changes in donor or target populations, with an attendant reduction in natural
productivity (e.g., Nickelson et al. 1986, Hindar et al. 1991, Fleming and Gross
1992). Genetic and ecological risks to a listed species are likely to be reduced if a
recovery program involving artificial propagation is scaled appropriately for the
natural system and if precautions are taken to minimize genetic differentiation
between artificially and naturally propagated fish.

The risks to listed species posed by the use of artificial propagation may depend
upon the species involved and upon the geographical location of the culture
facility. For example, species with extended freshwater residence are likely to face
higher risk from domestication, predation, or altered migration than are species that
spend only a brief time in fresh water (e.g., pink salmon, O. gorbuscha, or chum
salmon, O. keta). Similarly, hatcheries that require a lengthy freshwater migration
for their released and returning fish may face many migration and mortality
problems avoided by facilities closer to the ocean. Life history, adult returns,
straying rates and patterns, potential disease transfer, and harvest impacts are
among the factors that should be considered in evaluating the risks of using
artificial propagation for recovery of listed species.

The genetic and ecological risks associated with the use of artificial propagation,
together with the inevitable disruption in life-history patterns, must be weighed
against risks to the species if artificial propagation is not used in a recovery
program. As noted previously (Part I), a successful hatchery program for Pacific
salmon can produce many more returning adult fish than are produced naturally.
Therefore, the principal risk in not using artificial propagation in a recovery
program is in forgoing the possibility of rebuilding the population in the shortest
time.

Given the emphasis in the Act on conserving species in their native ecosystems,
and given the above-mentioned risks associated with artificial propagation, a
guiding principle for an ESA recovery plan should be to restore a viable natural



population with the minimum amount of interference in its life history. For Pacific
salmon, this means that options such as protecting and restoring natural spawning
and rearing habitat, facilitating migrations of juveniles and returning adults, and
managing harvest should be given highest priority in recovery plans. Clearly, then,
it is essential that all factors responsible for the species' decline be identified as
completely and as early as possible. (Kaczynski and Palmisano (1992) catalog
several of these potential factors, which include natural phenomena, ecological
interactions, management of harvest and escapement, and water and land use, as
well as artificial propagation.) Artificial propagation should receive foremost
consideration only when it is believed that recovery within an acceptable time is
not likely to result from addressing these other factors alone.

The most compelling reason for use of artificial propagation in ESA recovery plans
is when extinction of the natural population is likely before natural recovery can
occur. If the size of a natural population is very low, then regardless of the amount
of genetic variability present, the population may become extinct for demographic
reasons (Leigh 1981, Goodman 1987, Lande 1988). In this case, the risks posed by
artificial propagation may be outweighed by its potential to rapidly increase
abundance and avoid extinction.

In some cases, artificial propagation may also be appropriate for use with
populations at less immediate risk of extinction, if factors impeding recovery
cannot be remedied in a reasonable time. For example, habitat restoration may be
difficult to accomplish, and its effects on abundance may not be seen for many
years. In such cases, artificial propagation, in conjunction with efforts to remedy
factors responsible for the decline, may be appropriate as a component of a
recovery program. In making this determination, however, it must be remembered
that supplementation is a largely unproven technique that may not actually
contribute to recovery. In general, the lower the risk of imminent extinction or
irreparable harm to the species in the absence of artificial propagation, the less
attractive this form of intervention is as a potential recovery option.

There are also two special cases in which artificial propagation may warrant high
priority among recovery options. First, the outplanting of artificially propagated
fish may be necessary to aid recolonization of unutilized but suitable habitat if
natural straying is not likely to reseed the habitat within an acceptable time. (This
is an example of "transplantation" recognized in the definition of conservation
given in the Section 3(3) of the ESA.) Second, artificial propagation may be
necessary in recovery when habitat crucial to the viability of a natural population is
lost. In this case, artificial propagation provides a temporary means of conserving a
natural population until new or reclaimed habitat becomes available.



In any case, if artificial propagation is used as part of a recovery plan, it should not
be seen as a substitute for resolving the basic problems that brought the species to
the point at which it required protection under the Act. Furthermore, artificial
propagation under the ESA should be viewed as a temporary measure, to be
discontinued and all recovery options reevaluated if 1) artificial propagation is no
longer believed to be necessary for timely recovery, 2) naturally reproducing fish
have risen in abundance above levels for delisting, 3) appreciable differences
between artificially and naturally propagated fish have emerged during a recovery
program, or 4) there is evidence that artificial propagation is impeding recovery.

IV. USE OF ARTIFICIAL PROPAGATION IN
ENDANGERED SPECIES ACT RECOVERY PLANS

Once a decision has been made to incorporate artificial propagation into a recovery
plan, its implementation involves several important considerations. The intent of
such a plan should be to facilitate recovery of the natural population, minimize its
risk of further decline, and restrict genetic changes resulting from artificial
propagation. To reduce the potential for these risks to arise, the use of artificially
propagated fish to supplement a listed natural population should be held to the
minimum necessary for sustained recovery. As part of a recovery plan, artificial
propagation might require the collection of natural broodstock, the culture of
progeny from those adults, and the release of the progeny at appropriate localities
to supplement the natural population. Without adequate precautions, these
activities may have negative effects on listed species, including deleterious
ecological and genetic interactions between hatchery fish and natural fish. This
section suggests ways to minimize these effects when relying on artificial
propagation as a recovery tool.

A. Choice of Donor Stock

In order to qualify as a "species" under the ESA, a Pacific salmon population must
be an evolutionarily significant unit of the biological species. To preserve
distinctive characteristics of the ESU, therefore, broodstock for a recovery program
must originate from within the ESU. In some cases, significant population structure
may occur within an ESU. This structure is reflected by the genetic diversity
within and among the spawning aggregations (or populations) that make up the
ESU (Footnote 3). For example, Matthews and Waples (1991) recognized the
geographical and ecological complexity of the large area occupied by Snake River
spring/summer chinook salmon and emphasized that viability of the more
comprehensive ESU is dependent on the continued existence of self-sustaining



populations throughout the area. To maintain interpopulation diversity in such an
ESU, crossbreeding broodstock from separate populations within the ESU should
generally be avoided.

The geographic limits to the area that can provide broodstock for supplementing a
given population within an ESU must be determined on a case-by- case basis using
all available information. In general, broodstock from populations showing clear
differences in genetic, phenotypic, or life-history traits, or in habitat characteristics,
should not be mixed. A major consideration in such evaluations should be an
assessment of the relative degree of risk to the population from inbreeding
depression and outbreeding depression (see Definitions). The consequences of
inbreeding depression for genetic variability within populations are better
understood than the consequences of outbreeding depression for genetic variability
among populations (Lynch 1991, Hedrick and Miller 1992). Severe inbreeding (the
mating of close relatives) leads to reduced genetic variability and may cause
genetic or phenotypic changes that lead to reduced fitness within a population; this,
in turn, may limit the ability of an inbred population to adapt to changing
environmental conditions. Outbreeding (the mating of distantly related or unrelated
individuals) may enhance genetic variability and alleviate reductions in fitness in
inbred populations if the populations to be crossed are not too different genetically,
but outbreeding between genetically differentiated populations may result in
crosses that have reduced fitness due to genetic interactions or loss of important
local adaptations.

The nonlinear effect of inbreeding and outbreeding on fitness has suggested to
some that there may be an optimal amount of outbreeding for a population (see
Lynch 1991). In Pacific salmon, natural straying among populations may provide a
general mechanism for the avoidance of inbreeding depression. Although
inbreeding depression has been reported in a number of cultured fish populations,
similar effects are not well documented for hatchery populations of Pacific salmon,
nor is there evidence to show that inbreeding depression is a pervasive problem for
natural populations (Allendorf and Ryman 1987, Gall 1987). There also does not
appear to be any empirical evidence that outbreeding increases the fitness of
natural Pacific salmon populations, whereas there is some theoretical (Emlen 1991)
and empirical (Bams 1976; Reisenbichler, unpublished data cited in Emlen 1991;
Gharrett and Smoker 1991) evidence for the deleterious effects of outbreeding
depression. Therefore, while significant gaps exist in our understanding of the
effects of inbreeding depression and outbreeding depression in Pacific salmon,
there is ample reason for caution in creating artificial mixtures of populations
within an ESU. Nevertheless, outbreeding merits consideration if there is evidence
for deleterious effects of inbreeding depression in some local populations or if the



size of some local populations is so small that inbreeding is thought to pose a
serious risk.

Under extreme circumstances, use of broodstock from outside the ESU may merit
consideration. This option might be considered if the species is reduced to
individuals of a single sex or if substantial inbreeding depression gives little hope
for recovery of the remaining population without additional genetic material.

B. Broodstock Collection and Mating

In choosing fish to make up broodstock for use in supplementing a listed species, a
trade-off exists between maximizing the representativeness of the broodstock
sample and minimizing the risks to the natural population that result from taking
fish for breeding purposes. A large sample of broodstock is more likely to be
representative but also reduces the number of actual spawners by a greater amount.
This tension between representation and risk suggests that the propagation of
hatchery fish for restoration should be appropriately scaled for the system. The
potential exists in a supplementation program to overwhelm ecologically or
genetically the natural population with fish reared in the hatchery. The scale of
supplementation should therefore be guided by the estimated carrying capacity of
the ecological system associated with the ESU (taking into account resident fish in
the natural habitat that may compete for available resources), the method of
supplementation, the number of natural fish, and the number of fish that can be
sampled for broodstock without undue risk to the natural population. Furthermore,
determination of the appropriate scale should consider the possible genetic
consequences of enhancing only a portion of the natural gene pool (Ryman and
Laikre 1991).

Limiting the genetic differentiation of hatchery and natural fish is essential to
reducing risk to the natural population. Genetic differentiation of hatchery and
natural fish has two primary causal agents, one stochastic (genetic drift) and one
deterministic (selection). A major opportunity for stochastic effects on genetic
variability occurs when broodstock are initially sampled from a population. In
deciding what fraction of the population should be sampled, it should be kept in
mind that the only way to completely avoid genetic differentiation arising from
broodstock collection is to sample the entire breeding population. As this strategy
carries a high risk of catastrophic failure and, in any case, will not often be
feasible, a systematic subsampling scheme that minimizes risks to the natural
population will generally be required. Nevertheless, a comprehensive sampling
program merits consideration if the population size is very small or if the sex ratio
is highly skewed, if prespawning adults can be sampled without seriously



compromising natural reproduction, or if gametes can be sampled safely and
adequately after natural spawning.

If a subsampling strategy is used, a primary goal should be to obtain a
representative sample of adults for artificial propagation while allowing a
representative sample to spawn in the wild. Representativeness of the sample used
for artificial propagation is particularly important if progeny of the cultured fish
are expected to make up a substantial fraction of the total population. To reduce the
potential for directional genetic change and loss of local adaptation, sampled adults
should represent the entire return with regard to size, age, and other measurable
phenotypic characters that may have adaptive value. For example, adults should be
sampled from throughout the run, as spawning date may respond rapidly to
selection in salmonids (e.g., Siitonen and Gall 1989). If the number of available
natural spawners is large enough to permit a large sample to be taken, random
sampling (sampling without regard to measurable characters) is likely to ensure
that the natural population is represented adequately in the broodstock. If the
number of available natural spawners is too small to permit a large sample,
however, systematic sampling on the basis of measurable characters (particularly
run timing and size and age at maturity) may be required to achieve adequate
representation. Whatever the sample or population size, ensuring that gametes
transferred to the hatchery reflect those in the natural population will help to avoid
negative genetic effects due to sampling.

Another major consideration in designing a broodstock sampling program is its
consequences for effective population size, Ne (see Definitions). Effective size is
important because it determines the rate of genetic change experienced by a
population. Populations with small effective size can experience high levels of
inbreeding depression and high rates of loss of genetic variability. Artificially
propagating a portion of the population via supplementation may reduce Ne by
dramatically increasing the contribution of a fraction of the available genotypes to
the supplemented population (Ryman and Laikre 1991). Therefore, in determining
the number of breeders to be sampled in any year for artificial propagation, the
effects on total Ne as well as the representativeness of the sample should be taken
into account. Although Ryman and Laikre's study points out the importance of
considering Ne for the hatchery/natural population as a whole, it evaluated only
one supplementation scenario involving a single generation of enhancement and
did not specifically treat age-structured populations (such as Pacific salmon). In a
supplementation program designed to increase the abundance of naturally
spawning fish, Ne of the hatchery/wild system as a whole depends on a number of
factors, including: 1) the absolute number of spawners (and proportion of the



population) used for artificial propagation, 2) the life-history stage sampled from
the wild (e.g., gametes from pre- or post-spawning adults, eyed eggs, fry, or
smolts), 3) the duration of the enhancement program, 4) whether naturally and
artificially produced fish can be identified when they return as adults, and 5)
harvest, competition, carrying capacity, or other factors that may affect abundance
of the enhanced population. This is an active area of research, and more
comprehensive guidance may be available in the future about strategies for
appropriate scaling of a supplementation program.

Nevertheless, one strategy for sampling broodstock can be identified that has a
dual benefit in a recovery program for a listed species: in general, returning adults
that were produced artificially should not be used for broodstock. This strategy will
avoid unnecessary reductions in Ne (by avoiding repeated enhancement of the
same segment of the population) while also limiting to a single generation the
exposure of any natural fish to artificial conditions (thus minimizing possibilities
for selective genetic change). In very small populations, however, this strategy
may not be possible or even desirable. In such cases, judicious use of returning
hatchery fish for broodstock may be considered. Exclusive use of natural fish for
broodstock may also create an unacceptably high risk for the natural population.
This is particularly true for an unsuccessful or marginally successful hatchery
program, in which case artificial propagation may contribute directly to the decline
of the listed species by taking adults for broodstock. This possibility argues
strongly for a cautious approach, with attention to appropriate scaling, for a
supplementation program for a listed species.

Various authors (e.g., Franklin 1980, Lande and Barrowclough 1987) have
suggested that the effective size of a population should be on the order of several
hundred per generation to avoid long-term problems associated with loss of genetic
variability. For Pacific salmon, this is equivalent to a minimum effective number
of breeders per year (N<,sub>b) of approximately 50-100 (Waples 1990 - Footnote
4) . It is also generally believed that, in the short term, a population can experience
a substantially smaller bottleneck (Ne of perhaps 50 per generation or so) with little
risk of inbreeding depression. These are useful guidelines in formulating a
recovery plan for a listed species. However, in some cases (e.g., when total
abundance is very low) it may not be possible to achieve the desired effective size
regardless of whether artificial propagation is used. In such cases, the general
strategy for sampling and mating broodstock should be to maximize effective size
for the hatchery/wild system as a whole (as described above), while maintaining
representativeness of the adults used for broodstock.

Maintaining genetic characteristics of a population during artificial propagation



may also depend on how broodstock are mated. In theory, there may be some
advantages for a cultured population to mimicking mating strategies that occur in
the wild. However, mimicking natural spawning behavior might lead to large
inequalities in reproductive success among individuals (particularly males) and a
consequent reduction in Ne. Furthermore, the understanding of patterns of
reproductive success in natural populations is so incomplete that it would be
difficult to mimic natural conditions even if one wanted to.

Therefore, the mating design should be chosen to equalize as much as possible the
contributions of parents to the next breeding generation. This procedure will
maximize Ne for a given number of breeders and minimize the effects of selection
(Falconer 1981, Simon et al. 1986, Lande and Barrowclough 1987). If possible,
parents should be mated at random with regard to phenotypic characters that may
have adaptive value (e.g., age and size at maturity). Mating designs may include
matings of single pairs, matings of single females to overlapping pairs of males, or
factorial designs involving crosses between all possible parents. These different
designs are outlined by Becker (1984) and Gharrett and Shirley (1985). A modified
single-pair design is generally preferable to simple matings of single pairs because
it reduces the risk of loss due to infertile males. A factorial design, assuming that
the realized variance in progeny number is small, increases the probability of
unique genetic combinations in the progeny. However, a complete factorial design
will generally be feasible only with very small populations; the benefits derived
from a factorial design rapidly decrease (and the logistical difficulties rapidly
increase) with increasing numbers of adult spawners.

Gametes from different individuals should not be mixed prior to fertilization;
mixing would decrease the contribution of some individuals if variation in potency
of milt exists (Withler 1988). In very small populations, a fraction of the milt from
each male should be cryopreserved to maintain a "sire bank." These gametes can
provide additional male "breeders" in years when the number of available males is
low. Moreover, such crosses between brood years can help to preserve long-term
genetic variability if severe population bottlenecks have been frequent or
persistent.

C. Husbandry Techniques

There are two fundamental considerations in developing strategies for artificially
rearing fish in an ESA recovery plan: 1) how to produce the most fish in the
shortest possible time (and therefore speed the recovery process), and 2) how to
produce fish as similar as possible genetically and ecologically to natural fish in
the ESU. Although these considerations are not necessarily contradictory, it is clear



that there may be situations in which it will be difficult to accomplish them both
simultaneously. In such cases, the appropriate emphasis in husbandry techniques
should be dictated by the nature and degree of risk faced by the natural population.
For example, if the population is small enough that the short-term risk of extinction
is high, then it may be appropriate to place primary emphasis on producing enough
fish to rapidly expand the population size beyond the high-risk level. If the
necessity for expanding population size is less urgent, attention should focus on
husbandry techniques that are likely to produce fish with characteristics as similar
as possible to those of the natural fish. Some additional guidelines to consider
during culture of listed Pacific salmon species are discussed below.

There are some clear advantages to minimizing mortality in cultured fish to be
used in supplementation. If relatively high survival carries through to the adult
stage, substantial progress toward recovery is possible. Furthermore, by coupling
minimal genetic drift with low hatchery mortality due to disease and other agents,
a recovery program involving artificial propagation can, in principle, minimize
genetic change in a hatchery salmon population. However, with anadromous fish
such as Pacific salmon, mortality that operates after release (which typically
represents the bulk of total mortality) may also depend on culture conditions.
These conditions may affect subsequent mortality (Leider et al. 1990) by limiting
ability to forage, evade predators, and resist pathogens. Therefore, even if genetic
change is minimized in the hatchery, it may be difficult to avoid after release. For
example, selection for rapid growth or other factors during culture may result in
fish that tend to return at smaller sizes and younger ages, even in the absence of
selective forces in nature such as size- selective predation and harvest. However,
the latent effects of selection in captivity on subsequent survival, phenotype, and
reproductive success of salmonids are poorly understood. All that is known about
latent effects of selection in captivity is that culturing fish in the hatchery
environment, where they are protected from many sources of natural mortality, will
not eliminate natural selection that occurs after the fish are released. Rather, it will
postpone selection to a later life-history stage. Only if this delayed selection
removes the same genotypes that would naturally be removed earlier will the
cultured fish be genetically equivalent to their natural counterparts (Waples
1991b). Since the selective regime in nature cannot be duplicated, the best that can
realistically be attained is the minimization of differences between the hatchery
and natural environments. Efforts to simulate prominent features of the natural
environment in the hatchery should help to reduce the ability of domestication
selection (Doyle 1983) to produce genetic change.

Nonetheless, selection in the hatchery is to some degree unavoidable. Unknown
genetic correlations between traits can easily confound the detection and



measurement of selection (Falconer 1981). The most effective ways to limit
domestication selection in the hatchery are unknown, but they are thought to
include restricting the use of artificial propagation to a very few generations,
maintaining quasi-natural culture regimes, and minimizing mortality in the
hatchery.

A few general practices may help to enhance the survival and adaptive potential of
hatchery-reared salmon subsequently released to the wild. It should be understood,
however, that some of these practices are untested and warrant further
investigation. For the successful culture of Pacific salmon, what does not work is
often better known than what does work.

First, conservation facilities should develop procedures that provide adequate
safeguards for fish health. Adults contributing gametes should be regularly
sampled for pathogens (H†stein and Lindstad (1991) describe some of the more
common salmonid diseases). Incubation facilities should be sterilized before
gametes are transported there. Gametes brought into the facility should be isolated
from all others and the resulting fertilized eggs disinfected. To avoid horizontal
disease transfer, progeny should if possible be isolated by full-sib family until
cleared through pathological testing and then monitored regularly during culture.
Infected fish should be isolated and treated. However, it should be recognized that
some incipient level of disease is natural and also probably essential for
immunological readiness for episodic outbreaks. If necessary, the hatchery water
supply and effluent should be treated to minimize the transfer of pathogens to and
from the natural population.

Second, environmental conditions in the hatchery such as photoperiod, water
quality (temperature, pH, dissolved oxygen, dissolved solids and metabolites, etc.),
water flow, and substrate composition that attempt to simulate natural conditions
are likely to reduce typical differences between hatchery and natural fish.
Additional strategies that should be considered include use of low incubation and
rearing densities, provision of cover and structural heterogeneity for holding
facilities, and use of more variable feeding schedules and rates to better simulate
those experienced in nature. Emphasis should be placed on maintaining natural
variation in cultivated fish rather than on producing uniform fish of large size, a
more typical practice in production hatcheries. Feeding from the raceway bottom
and exposing fish periodically to model predators may help to avoid conditioning
fish to the presence of large animals above the water's surface, perhaps enhancing
their ability to detect and evade predators after release.

As a safeguard against catastrophic events, fish or gametes from a listed species
should be distributed between two or more facilities to "spread the risk," especially



if the entire population is brought into captivity. Progeny from the different
facilities could then be combined upon release into the natural habitat.

The details of various aspects of husbandry practices for conservation are not
found in standard salmon culture handbooks. Meffe (1986), Allendorf and Ryman
(1987), and Nelson and Soul‚ (1987) provide some guidelines for the maintenance
of genetic variability in artificially propagated fishes. Steward and Bjornn (1990)
summarize genetic and ecological factors to consider when supplementing natural
salmon populations with hatchery fish. However, a comprehensive review of
practices appropriate for a salmon facility designed specifically for stock
conservation is not available. Critical uncertainties exist in several areas, including
the effects of domestication on genetic variability within and between population;
the latent effects of selection on realized progeny number and genetic change; the
consequences of artificial propagation for performance traits such as survival,
growth, reproduction, and migration; and the consequences of quasi-natural
variability in culture conditions for these performance traits. Research in these
areas is needed before more specific guidelines for recovery can be recommended.

D. Release Strategies

The release of juvenile salmon into the natural environment is a critical stage in the
artificial propagation of salmon for recovery. The survival of released juveniles
depends heavily on their physiological status and ecological competency. In turn,
this readiness depends not only on their size at release and the timing of their
release, but also on the capability of hatchery fish to rapidly acclimate to
conditions in the wild. There is probably no single most effective release strategy
for purposes of salmon recovery; almost certainly, this will vary among the
biological species of Pacific salmon and among populations within species.
However, traditional releases of cultured salmon for enhancement seldom resemble
what is known about natural outmigrations of juvenile salmon. The preservation of
natural variability in artificially propagated fish is likely to be better maintained by
reproducing as much as possible the spatial and temporal patterns of movement
and colonization found in the natural habitat. This approach should thus help to
preserve population fitness and long-term productivity. Its possible costs include
reduced survival of released fish and, consequently, lowered efficiency of
supplementation.

A release strategy that attempts to mimic natural outmigration should have several
features. Upon release, the size and developmental profiles of artificially
propagated juveniles (including size and developmental variation among
individuals) should be similar to wild juveniles of equivalent age. It is important



that no attempt be made to reduce natural variation in size at release. While
hatchery fish released at larger sizes may survive to return at higher rates than
smaller hatchery fish (e.g., Martin and Wertheimer 1989), juvenile natural fish are
typically smaller than hatchery fish of the same age and developmental stage.
Releasing many larger fish may harm the smaller natural fish, perhaps even
displacing them from the habitat (Nickelson et al. 1986). Increasing the size at
release may also affect other life-history traits in the hatchery fish themselves, such
as age and size at maturity (Bilton et al. 1982), particularly if the supplementation
program exceeds a single generation.

Timing of release may be significant in determining how well hatchery fish survive
at sea to return (Bilton et al. 1982, Hard et al. 1985). Release timing may also be
important in reducing negative interactions between hatchery fish and natural fish
(Nickelson et al. 1986). A large body of research on anadromous salmonids
focuses on seasonal development and the factors affecting the physiological
transition from fresh water to seawater. It is now well documented that seasonal
cues such as photoperiod trigger endocrine processes that facilitate the transition to
seawater (Folmar and Dickhoff 1980, Hoar 1988). However, this transition is also
affected by other environmental factors such as water temperature (Holtby et al.
1989), and while considerable research has focused on the physiological state of
fish slated for release, many of the factors that maintain temporal variation in
saltwater adaptability remain elusive. To develop natural release strategies reliable
enough for recovery purposes, these and other factors that explain observed
variation in natural outmigrants must be more clearly defined.

In developing release strategies for artificially propagated juveniles, managers of
hatcheries intended for salmon conservation should keep in mind that much of the
mortality resulting from selection in the wild has already been avoided. Although it
is tempting to try to reduce additional mortality, the immediate objective is to
minimize genetic change in the cultured fish while facilitating recovery. In the
absence of definitive information on how natural selection acts on natural
outmigration, an attempt should be made to release fish in a manner that
recognizes the importance of natural variation. One option to be considered is the
release of juveniles before smoltification is complete in fresh water in a spatial and
temporal pattern that simulates the natural distribution of juvenile outmigration and
downstream movement. The spatial pattern of such a release should depend on the
estimated densities of natural fish in the watershed and should be used to colonize
underutilized (but suitable) rearing habitat. However, it should be recognized that
quasi-natural spatial and temporal patterns of outmigration may result in ecological
interactions that have deleterious consequences for the viability of natural fish. For
example, releasing large numbers of presmolts might increase competitive



interactions among juveniles or elevate predation rates on natural fish. Little
information is available to provide firm guidelines on natural release strategies,
and considerable research is needed to resolve uncertainties in the factors limiting
juvenile survival in natural habitats.

Despite the possibility of reduced survival and negative ecological interactions,
release strategies that take natural variability in size, timing, and related factors
into account may have several advantages. In addition to limiting genetic change
resulting from selection in the hatchery, natural release strategies that involve more
naturally cultured presmolts should permit released fish to acclimate more
completely to their natural surroundings. A more extended residence in the natural
habitat should provide greater opportunity for outmigrants to learn to cope with
natural predators (Olla and Davis 1989) and perhaps reduce their propensity to
stray to other sites at maturity (Reisenbichler 1988). It may also help to alleviate
reduced reproductive success that has been observed in natural habitats following
supplementation (Chilcote et al. 1986, Campton et al. 1991). Furthermore, release
practices that incorporate temporal and spatial variation should help to spread the
risk of catastrophic loss due to natural selection or chance environmental events.

Except in cases in which currently unutilized habitat is seeded, spatial variation in
releases should avoid the release of fish into habitats outside an ESU's range (stock
transfers). Stock transfers have several potential undesirable effects (as described
in previous sections) and are inconsistent with the maintenance of existing
population structure. The guiding principle for a release strategy, like all other
aspects of a recovery program, should be the preservation of genetic and ecological
diversity.

E. Monitoring and Evaluation

Monitoring the effects of artificial propagation on the restoration of a threatened or
endangered species should be a hallmark of a well-designed recovery plan.
Supplementation is an experimental technique with a largely unproven record. The
primary objectives of a monitoring and evaluation program administered under the
ESA should be to estimate the contribution of artificially propagated fish to the
natural population during the recovery process, to monitor changes in the genetic
and phenotypic characteristics of the listed species, to evaluate and suggest ways of
improving supplementation activities, and to determine when artificial propagation
is no longer necessary or appropriate to assist in recovery. Careful monitoring can
also aid in identifying factors impeding recovery and may assist in the
development of effective supplementation strategies for unlisted species as well as
measures to prevent other declining populations from relying on the ESA "safety



net" for protection and recovery.

To estimate the relative contribution of hatchery and natural fish during recovery,
these two groups of fish must be distinguishable. Permanently marking all cultured
fish is essential to accurately monitor trends in relative abundance. To identify
juveniles in the natural environment as well as adults returning to spawn, all
cultured fish should be unambiguously marked each generation with a unique,
permanent mark such as the commonly used combination of an adipose fin clip and
coded wire tag implant. Visual marks (i.e., brands or fin clips) are likely to prove
useful in monitoring fish in natural habitats, but managers must weigh this
advantage against possible costs in survival of fish marked in these ways. In some
cases, routine screening for genetic markers may allow more sensitive assessment
of direct genetic effects such as introgression (Skaala et al. 1990).

If possible, full-sib families should be kept separate until they can be uniquely
marked. This is most important for very small broodstocks, for which it is also
most feasible. For these broodstocks, the pedigreeing of families with the use of
unique marks should be considered to better monitor their genetic contribution to
successive generations.

Ideally, detectable genetic differences between hatchery and natural fish should not
exist in a successful recovery program. Monitoring genetic variation in hatchery
and natural fish to ensure their similarity is important to evaluate the techniques
used to sample and culture fish (Waples et al. 1990). Because genetic relationships
are at the foundation of ESA decisions involving Pacific salmon (Waples 1991a),
monitoring for genetic changes should be an integral part of the evaluative process.

Evaluation of artificial propagation as part of a recovery program should assess
long-term as well as short-term effects of artificial propagation on genetic and
ecological interactions between hatchery and natural fish. At a minimum, a
monitoring and evaluation program should regularly estimate survival to
outmigration and to subsequent adult return for both hatchery and natural fish. A
comprehensive monitoring and evaluation program would include the regular
estimation of genetic composition of artificially and naturally propagated fish; of
survival, rearing, and migratory success of juveniles; and of reproductive success
of adults returning to spawn naturally, as well as periodic evaluations of fish
health, behavioral assays, statistical analyses of morphological/phenotypic
characters of hatchery and natural adults, and estimates of introgression. The
evaluative process should be responsive enough to provide information that will
allow rapid adjustments in the recovery plan, such as changes in the size of
broodstock collections or juvenile releases, or modifications to the culture regime
to reduce the effects of domestication selection.



The most important functions of a monitoring and evaluation program are
determining whether artificial propagation is facilitating recovery and when
artificial propagation is no longer necessary for recovery. In general, once artificial
propagation is initiated as a component of an ESA recovery plan, it may continue
as long as ongoing management efforts that include artificial propagation are not
resulting in a stable increase in population size or in appreciable differences
between artificially propagated and natural fish. As stated in Part III, artificial
propagation should be terminated if there is reason to believe that artificial
propagation is actually impeding recovery. Cessation of artificial propagation for
recovery should also be considered if the naturally reproducing fish have increased
in abundance to levels appropriate for delisting or if artificial propagation is no
longer believed to be necessary for timely recovery. In such events, all recovery
options and their associated risks should be reevaluated. Successful recovery does
not preclude the use of artificial propagation for enhancement purposes so long as
enhancement is not likely to cause relisting or new listings.

F. Captive Broodstock Programs

Situations may arise that require greater reliance on artificial propagation to
facilitate the recovery of a threatened or endangered salmon population. The most
prominent of these situations is when the natural population is dangerously close to
extinction. One option to consider in this case is a captive broodstock program, a
special case of supplementation. A captive broodstock program typically involves
taking gametes or fish from the natural population, rearing them to maturity in the
hatchery, breeding them, and releasing their progeny into the natural habitat. A
captive broodstock program thus involves rearing fish in captivity for an entire life
cycle, rather than releasing them as fry or smolts as is done in a traditional salmon
hatchery. The potentially high survival of salmon in protective culture affords a
unique opportunity to produce large numbers of juveniles for supplementation in a
single generation. If proper precautions are taken to minimize genetic change
during the collection, mating, and rearing of captive broodstock, these programs
may provide the ability to rapidly restore severely depleted stocks.

However, it should be recognized that although captive broodstock programs hold
promise for some species, they are unproven as a conservation measure for Pacific
salmon and may involve considerable risk to the population. Therefore, as with
other types of artificial propagation for recovery, captive broodstock programs for
Pacific salmon should be regarded as experimental. Nonetheless, a captive
broodstock program may be the preferred option if the imminent risk of extinction
is high. If implemented as part of a recovery plan, a captive broodstock program
should be integrated with other measures intended to address population viability,



such as habitat protection and restoration (Povilitis 1990).

If sufficient adults are available for a captive broodstock program, it may be
desirable to allow some of the captive adults to spawn in the wild. Captive
broodstock may be collected as adults, as deposited eggs, or as juveniles from the
natural habitat. The choice of life stage to collect affects how much natural
selection occurs in the broodstock sample before it is established in the hatchery
and may also affect the representativeness of the sample. The later the life stage,
the greater the opportunity for natural selection to occur and, consequently, the
more closely the resulting broodstock is likely to resemble the natural spawning
population. However, potential disadvantages of collecting older life stages for use
as broodstock include difficulties in acclimating older juveniles to the hatchery
environment and, if adults are used, prespawning (holding) mortality. Any losses
that occur that alter the original genetic composition would reduce the efficacy of
supplementation in rebuilding the natural population.

The guidelines recommended for artificial propagation regarding collection and
mating of broodstock, rearing and releasing strategies, and monitoring may be even
more critical to the success of a captive broodstock program. In such a program,
natural selection on fish brought into the hatchery can be minimized if mortality
during captivity is low. If so, the main genetic consequences to be assessed are the
consequences of broodstock sampling, mating, and progeny release strategies, and
the effects of enhancing particular genotypes (Ryman and Laikre 1991). Note that
this latter effect does not occur if the entire population is enhanced through
artificial propagation.

Of paramount importance for a threatened or endangered species is protection of
the captive broodstock from catastrophic loss or high mortality. This is especially
true if all natural gametes have been removed from the wild to establish a captive
broodstock program. Consequently, the broodstock gametes should be divided
between at least two independent facilities. Broodstock should be isolated from all
other fish and kept under security with safeguards against environmental
perturbation (including equipment failure). Because a release strategy is the pivotal
last element in a recovery attempt involving a captive broodstock, timing of
releases should be based on the behavior of any remaining natural fish, or on
knowledge of the life-history characteristics of the natural fish if none are present.

Finally, captive broodstock programs are most appropriate as temporary recovery
measures. For the purposes of recovery under the ESA, a captive broodstock
program should, if possible, be limited to one complete life cycle, at which time
the progeny of these broodstock would be released into the wild. Determination of
whether such a program should be extended beyond a single generation will



depend on the performance of these fish in captivity and the wild and on the
viability of the natural component being supplemented.

V. ARTIFICIAL PROPAGATION OF SPECIES NOT
LISTED UNDER THE ENDANGERED SPECIES ACT

For several decades, artificial propagation of Pacific salmon has been used in an
attempt to mitigate detrimental impacts, such as destruction of habitat or blockage
of migratory routes, to natural populations. Artificial propagation of Pacific salmon
is now widespread throughout much of their natural range, and in many cases it has
been instrumental in sustaining or increasing harvest. Nonetheless, although the
potential of artificial propagation to increase salmon abundance holds promise for
facilitating recovery of listed species, this capability also creates the possibility for
undesirable impacts on both listed and unlisted species (e.g., Johnson et al. 1991).
Such impacts must be minimized to avoid conflicts with recovery of listed species
and additional listings of currently unlisted species. Such a result is likely unless
adequate precautions are taken to minimize interactions between listed and unlisted
species.

Artificial propagation of unlisted species may have indirect effects on listed
species (see Parts III and IV for specific examples) by reducing their abundance or
altering the selection regime affecting them (Waples 1991b). Interactions between
unlisted hatchery fish and listed natural fish may result in greater competition for
food, habitat, or mates; an increase in predation or harvest pressure on natural fish;
and potential transmission of disease between populations (Steward and Bjornn
1990). In addition, artificial propagation can entail habitat changes with
detrimental impacts on natural fish. Examples of potential problems include effects
of hatcheries on water quality and effects of weirs or diversion structures on
migration of natural fish.

While interactions between unlisted and listed salmon species are more likely for
hatcheries in geographic proximity to listed species, more distant hatcheries may
also pose problems for listed species. Perhaps the most notable of these problems
is harvest of listed species in mixed-stock fisheries attempting to target artificially
propagated fish. Additionally, attempts to capture artificially propagated spawners
that stray may hinder the ability of listed fish to migrate to and spawn in their
natural habitat. Therefore, to reduce the potential for deleterious effects on listed
species, artificial propagation procedures for unlisted species in areas that may be
important to the viability of listed species should be coordinated to minimize these
effects and monitored to ensure that this is the case.



For situations in which genetic interactions between unlisted and listed species are
a possibility, genetic changes attributable to artificial propagation should be limited
as much as possible to reduce the severity of these interactions. Direct effects
include straying and subsequent crossbreeding with listed fish, which may result in
loss of genetic variability between populations and depressed fitness in population
crosses. Low rates of natural straying may be beneficial in maintaining genetic
variability in natural populations, but these rates may become elevated through
artificial propagation (Bams 1976, Reisenbichler 1988), with potentially serious
consequences for local adaptation in listed species. These effects have already been
discussed in some detail with regard to artificially propagating a listed species for
recovery in Parts III and IV, but they are likely to be even more serious when they
involve a listed species and unlisted hatchery fish from outside the ESU.

Because of the prevalence of hatchery programs throughout the Pacific Northwest,
for listed species genetic interactions with unlisted hatchery populations will often
be a possibility. In such cases, one means to help limit this genetic contact is to
regularly evaluate and if necessary modify culture practices so that their activity
does not contribute to the loss of genetic integrity of natural fish. Hatcheries
involved should restrict their choices of broodstock to local populations. The origin
of broodstock either returning to hatcheries or collected off-site should be verified
before spawning. Stock transfers between propagation facilities that increase the
possibility for adverse genetic interactions with listed species should be avoided.
Conditions or procedures associated with artificial propagation that result in
differentiation of phenotypic traits between cultured and natural fish should be
identified and generally avoided. Collection of returning hatchery fish should be
designed to restrict opportunities for these fish to interfere with the natural
breeding of listed fish. Monitoring the effects of interactions on natural fish is
essential to ensure that artificial propagation of unlisted species remains
compatible with conservation efforts directed at listed species (discussed further in
Part IV).

The effects described above resulting from artificial propagation of unlisted
species may constitute a "take" of a listed species as defined in the Act (see
Definitions). Take of all salmon species currently listed under the ESA is
prohibited without specific authorization. However, two specific types of take of
listed species that can result from activities associated with artificial propagation
may be authorized under the ESA. Directed or intentional take of a listed species
may be permitted under Section 10(a)(1)(A) of the ESA only if it "would further a
bona fide and necessary or desirable scientific purpose or enhance the propagation
or survival of the endangered species, taking into account the benefits anticipated
to be derived on behalf of the endangered species" (50 CFR 222.23(c)). Directed



take of individuals of a listed Pacific salmon species to fulfill broodstock needs for
conservation of the listed species, as discussed in Part IV of this document, is an
example of an activity that might be permitted under Section 10(a)(1)(A) of the
ESA. Collection of a listed species for the purpose of enhancing a population that
is not part of the ESU is an example of a directed take that is not permissible under
the Act.

Incidental take is take that results from, but is not the purpose of, an otherwise
lawful activity. Incidental take is the form of take likely to arise most commonly
during the artificial propagation of unlisted species. Direct and indirect effects on
listed species discussed earlier in this section are examples of incidental take of
listed Pacific salmon. Incidental take can legally occur only after fulfilling the
requirements of Sections 7 or 10 of the ESA, depending on whether or not there is
Federal involvement in the activity. For Federal actions, incidental take of listed
species is subject to the requirements of Section 7 of the ESA. Section 7(a)(2)
requires that "each Federal agency shall, in consultation with and with the
assistance of...[NMFS], ensure that any action authorized, funded, or carried out by
such agency is not likely to jeopardize the continued existence of (Footnote 5) any
endangered species or threatened species...." If consultation determines that the
action is not likely to jeopardize any listed species, then an incidental take
statement under Section 7(b)(4) may be issued. The incidental take statement
specifies those "reasonable and prudent measures...necessary or appropriate to
minimize...impact" and specifies other "terms and conditions (including, but not
limited to, reporting...) that must be complied with" (Section 7(b)(4)). In addition
to the operation of propagation facilities, Federal funding or authorization
(permitting or licensing) of such facilities or associated activities constitute
"agency actions" which require compliance with Section 7 standards. Coordination
with non-Federal entities (e.g., state or tribal agencies) that operate or manage such
facilities is encouraged to ensure that the Section 7 consultations are conducted
with the best available information.

Non-Federal activities (i.e., activities not directly influenced by Federal agency
actions) that are likely to result in the incidental take of a listed species can be
conducted only if a conservation plan is prepared and an incidental take permit
issued pursuant to Section 10(a)(1)(B) of the ESA. In this case, the conservation
plan must comply with the Act by specifying: 1) impacts that will likely result
from the take, 2) steps the applicant will take to minimize and counter such
impacts (as well as the resources available to implement these steps), 3)
alternatives to the take and the reasons why these alternatives have been dismissed,
and 4) other measures that may be required by NMFS (in the case of Pacific
salmon) for the conservation plan (50 CFR 222.22).



In addition to potential effects on listed species, the artificial propagation of an
unlisted species may contribute to its own decline or to the decline of other
unlisted species. There is a growing perception that this has been the case for many
Pacific salmon enhancement programs in the Pacific Northwest (e.g., Goodman
1990, Hilborn 1992). The considerations outlined above for interactions between
listed and unlisted species generally apply to interactions between different
unlisted species as well. Many of the general guidelines for recovery of listed
species described in Part IV of this document provide a working foundation for the
operation of existing and future salmon hatcheries that may enhance their longevity
in the face of increasing conservation activities. The future of artificial propagation
for unlisted species of Pacific salmon in the presence of conservation activities
hinges on the ability of artificial propagation to operate under the constraints of the
ESA and, ultimately, on its compatibility with the conservation of natural salmon
populations in their natural settings.



VI. DEFINITIONS

Allele - An alternative form of the same gene at a particular gene locus (the
location of the gene on a chromosome).

Artificial propagation - Any assistance provided by man in the reproduction of
Pacific salmon. This assistance includes, but is not limited to, spawning and
rearing in hatcheries, stock transfers, creation of spawning habitat, egg bank
programs, captive broodstock programs, and cryopreservation of gametes.

Bottleneck - A sharp reduction of a breeding population's size to a few individuals.
The genetic consequences of a bottleneck, especially the loss of genetic variability,
depend on both its magnitude and its duration.

Captive broodstock program - A form of artificial propagation involving the
collection of individuals (or gametes) from a natural population and the rearing of
these individuals to maturity in captivity. For listed species, a captive broodstock is
considered part of the evolutionarily significant unit (ESU) from which it is taken.

Crossbreeding - Reproduction between two distinct conspecific gene pools
(compare with "hybridization," which generally refers to reproduction between
distinct species or higher taxa). With respect to listed species of Pacific salmon,
crossbreeding generally refers to interbreeding between individuals from different
evolutionarily significant units (ESUs).

Cryopreservation - Preservation of gametes at very low temperature (e.g., use of
liquid nitrogen to freeze sperm for later propagative use).

Domestication selection - Natural selection that operates on a population during
artificial propagation to produce adaptations to the culture environment (Doyle
1983). Domestication selection typically requires more than one complete life
cycle to produce a permanent phenotypic response. Domestication selection tends
to eliminate fish that cannot adapt well to the captive environment, which may
include some fish that are well-adapted to their natural environment.

Effective population size (Ne) - A mathematical construct that takes into account
skewed sex ratio and variance in progeny number, as well as the actual number of
breeders, to estimate the number of effectively breeding individuals in a
population. Ne is the size of an idealized population (i.e., one in which sexes are
equally represented, parents are randomly mated, and numbers of progeny are
randomly distributed among families) that shows the same rate of loss of genetic
variability as the observed population (Falconer 1981, Lande and Barrowclough



1987).

Evolutionarily significant unit (ESU) - A population or group of populations that
is considered distinct (and hence a "species") for purposes of conservation under
the Endangered Species Act. To qualify as an ESU, a population must 1) be
reproductively isolated from other conspecific populations, and 2) represent an
important component in the evolutionary legacy of the biological species (Waples
1991a). (In this document, the term "stock" is synonymous with "population.")

Fitness - An individual's contribution, relative to other individuals, to the breeding
population in the next generation. Measures of an individual's reproductive success
such as its survival, fertility, and age at reproduction, are typically used as
indicators of fitness. The fitness of a group of individuals (e.g., a population) may
be defined as the group's ability to maintain itself in its environment. It is therefore
a composite measure of individual reproductive success. Endler (1986) discusses
the fitness concept further.

Full-sib family - A group of individuals that shares the same two parents (i.e.,
brothers and sisters). Members of a half-sib family, by contrast, share only one
parent.

Genetic drift - The stochastic process of genetic change through random shifts in
allele frequencies. These changes can lead to loss (or, alternatively, fixation) of
alleles. Genetic drift can eliminate gene polymorphisms and thereby erode genetic
variability, and its effects are greatest in populations of small size.

Hatchery - An artificial propagation facility designed to produce fish for harvest
or spawning escapement. A conservation hatchery differs from a production
hatchery in that it specifically seeks to supplement or restore naturally spawning
populations.

Inbreeding depression - A reduction in fitness resulting from mating between
close relatives that occurs by chance in small populations or by assortative mating
in large populations. Inbreeding depression is a consequence of the expression of
deleterious recessive alleles as homozygosity increases; therefore, it depends
largely on dominance, or interactions between alleles within loci (Falconer 1981,
Lynch 1991).

Introgression - Incorporation of genetic material from one gene pool into another
by hybridization or crossbreeding, followed by backcrossing between crossbred
individuals and fish from the parental population(s).

Jeopardy - The National Marine Fisheries Service and U.S. Fish and Wildlife



Service have defined the phrase "jeopardize the continued existence of [a listed
species]" to mean "to engage in an action that reasonably would be expected,
directly or indirectly, to reduce appreciably the likelihood of both the survival and
recovery of a listed species in the wild by reducing the reproduction, numbers, or
distribution of that species" (50 CFR 402.02).

Listed species/listed population/listed evolutionarily significant unit (ESU) -
For Pacific salmon, any ESU that has been determined to be threatened or
endangered under Section 4 of the Endangered Species Act.

Natural fish - Fish that are progeny of naturally spawning parents (Waples 1991a).
Natural fish thus spend their entire life cycle (except perhaps for brief periods in
conservation facilities such as fish ladders or transportation barges) in natural
habitat. (See Bjornn and Steward (1990) for a suggested distinction between the
terms "natural" and "wild" fish.)

Outbreeding depression - A reduction in fitness that results from mating between
unrelated or distantly related individuals (see crossbreeding). Outbreeding
depression may result from loss of local adaptation (see Taylor 1991 for a review
of local adaptation in salmon) or from the breakup of gene combinations favored
by natural selection; in the latter case, the effects of outbreeding depression are
thought to depend on epistasis, or interactions between different loci (Lynch 1991).

Recovery/restoration - The reestablishment of a threatened or endangered species
to a self-sustaining level in its natural ecosystem (i.e., to the point where the
protective measures of the Endangered Species Act are no longer necessary).

Recovery program - A strategy for the conservation and restoration of a
threatened or endangered species. An Endangered Species Act recovery plan refers
to a plan prepared under Section 4(f) of the Act and approved by the Secretary,
including 1) a description of site-specific management actions necessary for
recovery, 2) objective, measurable criteria that can be used as a basis for removing
the species from threatened or endangered status, and 3) estimates of the time and
cost required to implement recovery. (For Pacific salmon, "Secretary" refers to the
Secretary of Commerce.)

Self-sustaining population - A population that perpetuates itself, in the absence of
(or despite) human intervention, without chronic decline, in its natural ecosystem.
A self-sustaining population maintains itself at a level above the threshold for
listing under the Endangered Species Act. In this document, the terms "self-
sustaining" and "viable" are used interchangeably.

Species - "Any subspecies of fish or wildlife or plants, and any distinct population



segment of any species of vertebrate fish or wildlife which interbreeds when
mature" (Endangered Species Act, Sec. 3 (15)). For Pacific salmon, this includes
any distinct population segment that meets the qualifications of an ESU (Waples
1991a). A listed species is one determined to be threatened or endangered under
the Endangered Species Act.

Stock transfer - Transfer of fish from one location to another. This includes any
fish originating outside the geographical boundary of an ESU and transferred into
it, any fish transferred out of an ESU's range or between areas occupied by
different ESUs, or any fish transferred into vacant habitat.

Supplementation - The use of artificial propagation to reestablish or increase the
abundance of naturally reproducing populations (c.f. recovery/restoration).

Take - To "harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect,
or to attempt to engage in such conduct" (Endangered Species Act, Sec. 3(18)). See
Part V for the regulation of take during artificial propagation.
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Footnotes

1. The term "Pacific salmon" has traditionally referred to species of the genus
Oncorhynchus, five of which (O. gorbuscha, O. keta, O. kisutch, O. nerka, and O.
tshawytscha) occur in North America. The recent decision to move the western
trouts from the genus Salmo to Oncorhynchus calls this usage into question. In this
document, "Pacific salmon" is used to include anadromous forms of O. clarki and
O. mykiss, as well as the five above-mentioned species (Waples 1991a).

2. Defined in this context as fish that are in a hatchery (see Definitions) or have
spent part of their life cycle prior to maturity in a hatchery.

3. ALthough such spawniung aggregations may exhibit genetic and phenotypic
differences sufficient to discriminate among different populations, the evolutionary
significance of these differences may be uncertain (Waples 1991a).

4. This estimate of Nb is appropriate for species of Pacific salmon with several
year classes represented in the spawning population and an average age at maturity
of 3-5 years (pink salmon excluded).

5. The phrase "jeopardize the continued existence of" has a strict legal meaning in
the context of the ESA: "[To] engage in an action that reasonably would be
expected, directly or indirectly, to reduce appreciably the likelihood of both the
survival and recovery of a listed species in the wild by reducing the reporduction,
numbers, or distribution of that species" (50 CFR 402.02).
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