State of California The Resources Agency DEPARTMENT OF FISH AND GAME

ANNUAL REPORT TRINITY RIVER TRIBUTARY JUVENILE STEELHEAD INDEX REACH PROJECT, 2000-2001 PROJECT 2c2

by

Patrick Garrison Northern California, North Coast Region

Steelhead Research and Monitoring Program January 2002

Abstract

Two field seasons (2000 and 2001) of backpack depletion electrofishing have been completed on 22 index reaches on eight tributaries of the Trinity River in order to quantify juvenile steelhead densities during the low flow period of August through September. Juvenile steelhead were encountered in all (100%) reaches in both 2000 and 2001. Sub-yearling densities of juvenile steelhead averaged 0.313 and 0.261 fish per square meter for all tributaries, respectively for 2000 and 2001. Yearling and older (1+) juvenile steelhead densities averaged 0.062 and 0.053 fish per square meter for all tributaries, respectively for 2000 and 2001.

Introduction

Estimating juvenile steelhead abundance within small streams is relatively easy to accomplish. The sampling protocol is well established, and it is normally conducted during the period of minimum stream flow (August – September). It can produce a statistically bounded estimate of the current number of steelhead inhabiting a small section of stream. It has the further advantage of examining an earlier life history stage than can be observed using passive out-migration traps. Other agencies, timber companies, consulting firms, and other sections of the Department have long-term index sections throughout the area for comparison.

Many of the rivers and streams included in this study have been surveyed and habitat typed by the United States Forest Service (USFS) in the past 12-15 years. These surveys were done to determine fish distribution related to timber harvest and road construction, and to aid in the preparation of watershed analysis reports in accordance with the Northwest Forest Plan (Chris James, USFS unit biologist, personal communication). A current sampling universe of all anadromous tributaries in the Trinity River basin is continually being updated and is provided in Appendix 4. Physical barriers to upstream adult steelhead migration are used to delineate the sampling universe whenever possible. In the absence of a physical barrier, an estimated gradient of 20% is used to identify the upper boundary.

Study Area

The Trinity River is the largest tributary to the Klamath River, and one of the most important steelhead and salmon sport-fisheries in California. The watershed is mountainous, semi-wilderness region of about 2,900 square miles in Trinity and Humboldt counties. The South Fork Trinity River is the largest tributary to the Trinity and has a drainage area of 898 square miles and originates in the Yolla Bolly wilderness area of southern Trinity County (Healy, 1970). The following map, Figure 1, displays the complete sampling universe of the Trinity basin with selected tributaries designated and highlighted.

Figure 1. Map of Trinity basin and juvenile steelhead index reaches

Sampling Methodology

Index reaches were selected from a sampling universe of all 1-4th order anadromous tributaries of the Trinity basin accessible to steelhead upstream of the New River, and including the entire South Fork of the Trinity River. The sampling universe was developed by careful evaluation of U.S. Forest Service (USFS) habitat typing files located at Weaverville and Hayfork Ranger Districts and through personal communication with Lee Morgan of the Lower Trinity Ranger District. Creeks not included or documented in USFS habitat typing files were either gleaned from Department files or estimated based upon gradient.

Index reaches were selected using weighted stratified random sampling. Anadromous tributaries were stratified into two basins: South Fork basin and Main-stem basin. Within each basin, creeks are assigned ranges of their applicable anadromous river mileage (km). From each basin, seven tributaries are randomly selected, with the probability of selection based upon creek mileage.

Creeks selected from the main-stem basin include East Fork North Fork of the Trinity River (EFNFTR), Rush Creek, Canyon Creek, Soldier Creek, East Weaver Creek, Brock Gulch and Redding Creek. Creeks selected from the South Fork basin include Rattlesnake Creek, Hayfork Creek, Mosquito Creek, Tule Creek, Big Creek, Potato Creek, and Butter Creek. Of these fourteen creeks, seven had index reaches set up on them in 2000. Seven of the fourteen selected were deemed inappropriate for index reach electrofishing based upon several deviations from essential critera. Rush Creek, Tule and Redding Creek were dropped due to problems with ascertaining continued permission to sample on private property. Canyon Creek and Brock Gulch were dropped due to size considerations; Canyon Creek has flows that prevent backpack electrofishing even at the lowest water in late September; Brock Gulch does not have substantial surface water flows, especially in critically dry water years. In 2001, three additional creeks were selected at random for sampling. Two of these creeks, North Philpot and Glade, were dry and deemed un-fishable due to the critically-dry water year. Little Grass Valley Creek was successfully selected with all three reaches meeting primary criteria.

Once a creek is randomly selected for sampling, two to three index reach locations are randomly selected within that creek based upon mileage. Longer creeks have three sites selected, while smaller creeks (less than three km.) have two sites selected. Sites are selected by computer, which randomly selects several site mileages from a creek's mileage range. Approximate locations are then plotted on the map before going into the field. Crews then proceeded to the approximate location and select a site that meets basic site criteria. Some site had to be "massaged" due to problems with excess pool depth, excessive vegetation, man-made structures within site boundaries, or private property concerns. When "massaging" a site during the selection process, crews always look down-stream of the selected site location.

Juvenile index reaches range from 200 to 250 feet in length, and ideally include sections of pool, riffle, and run habitat. Minimum site criteria require the presence of at least one pool, no deeper than three feet, per reach. Also, reaches are not located within areas with evidence of high levels of human activity such as camping or active mining claims, and do not contain man-made structures such as dams, weirs, or culverts.

Index reaches are visited by a variety of project crew members over the five year course of this study. It is imperative that reaches can be identified accurately by crew members even if they have not visited the specific index reach previously. Permanent hard copy files are maintained in the SRAMP Weaverville office, as well as electronic files, which identify reach location and length, and the location and type of markers used to locate the reach. Reach coordinates are programmed into portable GPS units. Hard copy files will include a map showing the location of the reach, the site coordinates, and a physical description of the reach site, especially as it relates to physical markers (such as township range and section markers) and other features. Reach descriptions, including start coordinates and directions are provided in Appendix 3.

Index reaches are to be sampled once a year during low flow conditions (August/September) by a crew of three to five people. Each reach is re-habitat typed every July to insure consistency between years. New physical parameter measurements are used each year to compute juvenile steelhead densities. After identifying the location of the index reach, the reach will be sampled using a Smith-Root backpack electrofisher (model 12-B, programmable waveform).

Depletion electrofishing protocol

- a) Place block nets to separate habitat types within each index site.
- b) Measure water conductivity and temperature.
- c) For each habitat type within the index site, perform a single upstream electrofishing pass. Record time taken in first pass, so that equal effort can be made on each subsequent passes.
- d) Collect fish in buckets, anesthetize with MS-222, and record species, length and weight. Take required biological samples.
- e) Move fish to fresh water tank and observe recovery.
- f) Hold fish in perforated in-stream bucket, in sheltered location outside of reach.
- g) Conduct second and third passes in the same manner as the first and repeat data collection procedures. Repeat if necessary.
- h) Remove block nets and record physical reach data and additional environmental parameters.

All necessary precautions are taken to avoid disturbing the sampling reach, especially prior to placement of block-nets. Water temperature and specific conductance are taken prior to electrofishing to determine the appropriateness of electrofisher settings. Electrofishing protocol will follow accepted DFG depletion methods.

Electrofisher settings protocol

The following electrofishing settings are to be used with their corresponding conductivities. Do not electrofish at conductivities below 50μ S/cm^3.

 $50-100\mu$ S/cm³- Start with 300V G4, If no fish response, increase to G5; then to 400 G4....400G5 etc. Do not exceed 500 V or 50 Hz.

100-300 μ S/cm^3- Start with 300V G4, if no fish response, increase to G5. Do not exceed 400 V or 40 Hz.

 $300+\mu S/cm^3$ - Start with 200V G4, if no fish response, increase to G5, then to 300V G4. Do not exceed 300V or 40Hz .

Selection of appropriate electroshocker settings is critical to the health of the sampled fish. All crew members are required to understand the principles of effective and safe electrofishing operation. Inexperienced crew members only operate the electrofisher under the direction of an experience crew member. All members of the electrofishing crew will and do have current CPR certification.

After electrofishing has been completed, captured fish from each habitat unit are separated by species. Steelhead are anesthetized, scale samples taken, and the following data collected: fork length (mm); weight (g); and total number. The fish will then be returned to a container of fresh water, and observed for injury or mortality. All fish mortalities are collected for future analysis. Additionally, genetic samples (upper caudal clip) are taken from every 10th sub-yearling steelhead and every 3rd yearling+ steelhead. After the fish have recovered sufficiently they are returned to the stream in a sheltered location downstream of current electrofishing efforts. Other species are counted and returned to the stream. All salamanders are immediately removed from any actively fished unit to reduce chances of predation.

Fish Population Estimation

Computer estimation of fish population sizes is accomplished with a maximum likelihood model that was developed by Dr. Ken Burnham from the U.S. Fish and Wildlife Service's Western Energy Land Use team. This model uses the successive depletion of catch sizes to estimate the actual population size by determining the likelihood of possible population sizes greater than or equal to total catch. The population size with the highest likelihood is considered the best estimate of actual population size. (Platts et al., 1983). From these estimates, juvenile steelhead densities (fish per meter^2) are developed for each index site, per habitat unit. Densities are further pooled to look at sub-yearling and 1+ juvenile steelhead densities in specific creeks and by type of habitat (fast-water or pool).

Results

Juvenile steelhead were encountered in 100% of tributary reaches selected for sampling. Several other species of fish were caught during sampling, and depletion estimates of abundance are made and available in Department files. Speckled dace, *Rhinichthys osculus*, were captured in EFNFTR, and Little Brown's, East Weaver, and Rattlesnake Creeks. Klamath small-scaled sucker, *Catastomus rimiculus*, were captured in EFNFTR, and Little Brown's and East Weaver Creeks. Pacific lamprey ammocetes, *Lampetra tridentata*, were found in EFNFTR, East Weaver and Rattlesnake Creeks. Brown trout, *salmo trutta*, were captured in EFNFTR, Soldier and East Weaver Creeks. Three-spined stickleback, *Gastreolus aculatus*, and coho salmon, *Oncorhynchus kisutch*, were only captured in Little Brown's Creek. Little Brown's Creek had the most diverse assemblage of fish with six species present.

	each	Area	SH 0	SH 0 Density	SH 1+	SH 1+ Density	Juv SH Density
Tributary	Re	(m^2)	captured	(per m^2)	captured	(per m^2)	(per m^2)
Rattlesnake	1	375.03	144	0.384	17	0.045	0.429
Rattlesnake	2	203.48	239	1.175	8	0.187	1.361
Rattlesnake	3	249.55	182	0.729	21	0.084	0.813
Big	1	426.84	158	0.370	20	0.047	0.417
Big	2	322.12	105	0.326	14	0.043	0.369
Big	3	330.25	50	0.151	30	0.091	0.242
Soldier	1	218.74	59	0.270	20	0.091	0.361
Soldier	2	177.72	47	0.264	22	0.124	0.388
Soldier	3	314.74	52	0.165	28	0.089	0.254
Potato	1	219.55	81	0.369	3	0.014	0.383
Potato	2	228.95	70	0.306	8	0.035	0.341
EFNF	1	526.01	66	0.125	20	0.038	0.163
EFNF	2	574.38	58	0.101	10	0.017	0.118
EFNF	3	449.90	49	0.109	25	0.056	0.164
Little							
Browns	1	290.50	18	0.062	11	0.038	0.100
Little							
Browns	2	200.03	24	0.120	25	0.125	0.245
Little							
Browns	3	268.35	130	0.484	16	0.060	0.544
East Weaver	1	439.69	228	0.519	27	0.061	0.580
East Weaver	2	178.00	118	0.663	14	0.079	0.742
Totals	19	5993.8	1878	0.313	339	0.062	0.375

Table 1. Trinity Tributary Index Reach Steelhead Catch Results by Reach, 2000.

Tributary	Reach	Area (m^2)	SH 0 captured	SH 0 Density (per m^2)	SH 1+ captured	SH 1+ Density (per m^2)	Juv SH Density (per m^2)
Little Grass							
Valley	1	165.40	9	0.054	11	0.067	0.121
Little Grass							
Valley	2	146.60	40	0.273	11	0.075	0.348
Little Grass							
Valley	3	178.17	17	0.095	11	0.062	0.157
Big	1	462.63	118	0.255	30	0.065	0.320
Big	2	340.89	41	0.120	17	0.050	0.170
Big	3	205.63	33	0.160	11	0.053	0.214
Soldier	1	166.62	94	0.564	8	0.048	0.612
Soldier	2	193.33	75	0.388	12	0.062	0.450
Soldier	3	209.09	87	0.416	18	0.086	0.502
Potato	1	231.00	119	0.515	7	0.030	0.545
Potato	2	259.79	84	0.323	25	0.096	0.420
EFNF							
Trinity	1	549.54	83	0.151	29	0.053	0.204
EFNF							
Trinity	2	443.80	76	0.171	6	0.014	0.185
EFNF							
Trinity	3	553.52	202	0.365	22	0.040	0.405
Totals	14	4106.0	1078	0.261	218	0.053	0.314

Table 2. Trinity Tributary Index Reach Steelhead Catch Results by Reach, 2001.

Length frequency analysis is conducted for each creek and available in Department files. Length frequency diagrams for juvenile steelhead for all creeks by year are shown below. Sub-yearling (0 age) steelhead are defined as all steelhead under 90 mm (Chicolte, 2001). Length-frequency histograms for all creeks show an obvious nadir around the 90 mm area, with the exception of EFNFTR.

Figure 2. Length-frequency diagram of all juvenile steelhead captured by electrofishing in Trinity River Tributaries, August-September, 2000.

Figure 3. Length-frequency diagram of all juvenile steelhead captured by electrofishing in Trinity River Tributaries, August-September, 2001.

Tributary	Numb	Area of	Steelhead	Steelhead	Total Juv.
-	er of	Habitat	0 Density	1+ Density	Steelhead
	Units	sampled	(per m^2)	(per m^2)	Density
	(n=)	(m^2)			(per m^2)
Little Browns	14	758.88	0.202	0.070	0.272
EFNF Trinity	12	1550.29	0.112	0.035	0.147
Potato	12	448.50	0.337	0.025	0.362
Soldier	18	711.20	0.207	0.103	0.310
Big	14	1079.21	0.290	0.062	0.352
Rattlesnake	17	828.06	0.682	0.091	0.773
East Weaver	10	617.68	0.560	0.066	0.626
Totals	97	5993.8	0.313	0.062	0.375

Table 3. Juvenile Steelhead Densities Summaries per Tributary –August-September,2000.

Table 4. Juvenne Steemeau Densities per Thouary, August-September 2001	Table 4.	Juvenile Steelhead	Densities per	Tributary,	August-Se	ptember 2001.
--	----------	--------------------	---------------	------------	-----------	---------------

Tributary	Numb	Area of	Steelhead	Steelhead	Total Juv.
	er of	Habitat	0 Density	1+ Density	Steelhead
	Units	sampled	(per m^2)	(per m^2)	Density
	(n=)	(m^2)			(per m^2)
EFNF Trinity	12	1546.86	0.233	0.037	0.270
Potato	12	490.79	0.415	0.065	0.480
Soldier	18	569.04	0.450	0.067	0.517
Big	13	1009.45	0.190	0.058	0.248
Little Grass	14	490.17	0.135	0.067	0.202
Valley					
Totals	69	4106.31	0.261	0.053	0.314

Hydro-thermographs were placed in each reach prior to the beginning of the 2001 electrofishing season. The purpose of these installations was to monitor daily mean and maximum water temperatures. The NMFS recommended temperature of 18 °C for backpack electrofishing was exceeded in 16 of the 22 index reaches during the 2001 low flow season. Mean daily temperatures all fall within allowable tolerance levels for juvenile steelhead. Severe maximum temperatures detrimental to juvenile steelhead were observed in Little Brown's, East Weaver and Rattlesnake Creeks, all of which were not electrofished this year. All thermal/flow impaired units were visited several times during the season and no steelhead mortality was ever observed. However, during these periods of low flow, larger juvenile steelhead were often observed utilizing deep stagnant pools, again with no observed mortality.

Creek	Reach	Mean Ten	nperatures (°	C)	Extreme Temperatures		
					(°C)		
		Daily	Minimum	Maximum	Minimum	Maximum	
Big Creek	1	13.61	12.09	15.37	9.17	18.42	
Big Creek	2	13.29	12.11	14.56	8.99	17.41	
Big Creek	3	13.54	12.18	14.71	8.72	17.94	
EFNF	1	17.51	15.47	19.70	11.63	23.83	
EFNF	2	17.47	16.18	18.69	11.99	22.53	
EFNF	3	16.69	15.34	18.09	11.76	21.63	
East Weaver	1	18.77	15.33	25.59	12.59	29.38	
East Weaver	2	15.40	13.70	17.48	10.22	21.12	
Little Browns	1	16.16	13.40	18.95	9.59	23.79	
Little Browns	2	18.70	13.89	28.88	10.07	35.74*	
Little Browns	3	16.32	13.40	22.44	9.46	28.57	
Little Grass							
Valley	1	13.35	11.86	14.71	9.07	17.83	
Little Grass							
Valley	2	12.96	11.69	14.10	9.14	16.78	
Little Grass							
Valley	3	12.67	11.22	13.98	8.83	16.60	
Potato	1	15.00	13.18	16.96	10.13	20.22	
Potato	2	14.31	13.35	15.17	10.26	17.92	
Rattlesnake	1	16.12	14.04	18.83	10.54	23.12	
Rattlesnake	2	15.62	14.32	17.22	10.73	21.17	
Rattlesnake	3	15.37	14.13	16.81	10.07	19.99	
Soldier	1	14.90	13.58	16.13	10.68	19.01	
Soldier	2	14.33	13.27	15.28	10.87	17.45	
Soldier	3	13.75	12.75	14.63	10.70	16.79	

Table 5. Thermograph Data – Trinity River tributaries, August 1, 2001- September 30, 2001

*Extremely high water temperature probably due to thermograph de-watering

Discussion

Densities of sub-yearling and yearling and older juvenile steelhead observed during this study fall within the ranges other agencies have found within the Klamath Mountains Province (KMP) ESU. In 1999 and 2000, Oregon Department of Fish and Wildlife conducted a similar survey of juvenile steelhead in the KMP. Across the entire KMP, the mean density of presumed juvenile steelhead ranged from 0.32 to 0.96 fish/m^2 for sub-yearlings and 0.034 to 0.097 fish/m^2 for yearling and older fish (ODFW, 2001). Densities in Trinity River tributaries (also in the KMP) for juvenile steelhead ranged from 0.062 to 1.175 fish/m^2 for sub-yearlings and 0.014 to 0.187 fish/m^2 for yearling and older fish.

Observed fish density between tributaries differed greatly within the Trinity basin. In 2000, East Weaver Creek and Rattlesnake Creek show the highest densities of juvenile steelhead; unfortunately, neither of these creeks were sampled in 2001 due to low flows. In 2001, Little Brown's Creek had the lowest juvenile steelhead densities; coincidentally, Little Brown's Creek appears to have a temperature problem and a preponderance of suckers and dace. Little Grass Valley Creek had the lowest juvenile steelhead densities in 2001; this is most likely due to the creek's lack of in-stream cover, and monotypic substrate (sand). Long-term analysis of juvenile steelhead densities will include trend analysis of densities over time and use of ANOVA to examine significance of difference between creeks.

Juvenile steelhead densities were pooled to examine the utilization of pool vs. riffle habitat. For the purpose of this comparison, riffle habitat designation was further expanded to include any fast-water habitat. As expected, densities of sub-yearling and yearling and older juvenile steelhead are slightly higher in pool than riffle habitat. Additionally, mean pool densities of yearling and older juvenile steelhead are nearly double that of densities in riffles during both years. One possible explanation to the disparity between densities in pool vs. riffles is that riffles are inherently more difficult to sample. The most probable explanation is that more older juvenile fish inhabit the "preferred" habitat, i.e. the pools, while sub-yearling fish are dispersed throughout all habitat types fairly evenly.

Tributary	Numb	Area of	%	Steelhead	Steelhead	Total Juv.
	er of	riffles	habitat	0 Density	1+ Density	Steelhead
	Units	Sampled	Riffle	(per m^2)	(per m^2)	Density
	(n=)	(m^2)				(per m^2)
Little Brown's	7	359.76	47.4	0.322	0.056	0.378
EFNF Trinity	7	982.07	63.3	0.089	0.031	0.120
Potato	6	291.46	65.0	0.347	0.007	0.354
Soldier	8	469.59	66.0	0.190	0.072	0.262
Big	5	436.31	40.4	0.250	0.048	0.298
Rattlesnake	7	252.57	30.5	0.519	0.048	0.567
East Weaver	7	543.24	87.9	0.486	0.050	0.536
Totals	47	3335.0	55.6	0.269	0.044	0.313

 Table 6. 2000 Trinity Index Reach Riffle Habitat Steelhead Densities.

 Table 7.
 2000 Trinity Index Reach Pool Habitat Steelhead Densities

Tributary	Numb	Area of	%	Steelhead	Steelhead	Total Juv.
-	er of	Pools	habitat 0 Density 1+ Density		Steelhead	
	Units	Sampled	Pool	(per m^2)	(per m^2)	Density
	(n=)	(m^2)				(per m^2)
Little Brown's	7	399.12	52.6	0.140	0.080	0.220

EFNF Trinity	5	568.21	36.7	0.151	0.044	0.195
Potato	6	157.04	35.0	0.318	0.057	0.375
Soldier	10	241.61	34.0	0.286	0.149	0.435
Big	9	642.89	59.6	0.317	0.067	0.384
Rattlesnake	10	575.49	69.5	0.754	0.111	0.865
East Weaver	3	74.44	12.1	1.102	0.188	1.290
Totals	50	2658.8	44.4	0.368	0.084	0.452

Table 8. 2001 Trinity Index Reach Riffle Habitat Steelhead Densities

Tributary	Numb	Area of	%	Steelhead	Steelhead	Total Juv.
-	er of	riffles	habitat	0 Density	1+ Density	Steelhead
	Units	Sampled	Riffle	(per m^2)	(per m^2)	Density
	(n=)	(m^2)				(per m^2)
EFNF Trinity	7	994.18	64.2	0.205	0.033	0.238
Potato	5	271.56	55.3	0.339	0.022	0.361
Soldier	8	359.39	63.2	0.390	0.053	0.442
Big	5	414.81	41.1	0.198	0.046	0.243
Little Grass	7	247.78	50.5	0.170	0.052	0.222
Valley						
Totals	32	2287.71	55.7	0.245	0.039	0.284

 Table 9. 2001 Trinity Index Reach Pool Habitat Steelhead Densities

Tributary	outary Numb		%	Steelhead	Steelhead	Total Juv.
-	er of	Pools habitat		0 Density	0 Density 1+ Density	
	Units	Sampled	Pool	(per m^2)	(per m^2)	Density
	(n=)	(m^2)				(per m^2)
EFNF Trinity	5	552.68	35.6	0.284	0.043	0.327
Potato	6	219.23	44.7	0.506	0.119	0.625
Soldier	10	209.66	36.8	0.553	0.091	0.644
Big	8	594.33	58.9	0.185	0.066	0.251
Little Grass	7	242.39	49.5	0.099	0.083	0.182
Valley						
Totals	36	1818.29	44.3	0.281	0.070	0.351

This study samples from a universe of all anadromous tributaries of the Trinity River, 4th order and smaller, upstream of the New River, including the entire South Fork Trinity River basin. ODFW, along with several other agencies studying steelhead over-summering habitat, only include 1st-3rd order streams in their sampling universe. I felt it was important to include larger streams as there is a pronounced migration of juvenile

fish to deeper holding habitat during low flow periods. During the summer, in several larger tributaries within the basin I have observed what appeared to be significantly high densities of juvenile steelhead occupying every riffle and pool tail-out. The East Fork of the North Fork ranges from 3rd - 5th stream order and was included when electrofishing proved plausible. Canyon Creek, another 3rd-5th order stream was selected but deemed unfeasible due to higher flows.

It is important to recognize possible sources of biases that result from the elimination of certain possible portions of the sampling universe. All inaccessible streams or portions of streams have been removed from the sampling universe, these include all streams that are not within one mile of driving access. Most of the area eliminated by access is wilderness area, specifically a large majority of the North Fork basin, which is generally recognized as the most pristine of the entire basin. Also eliminated from the sampling universe is a the private property where access has been denied to the Department.

Several assumptions must be met when using a depletion removal electrofishing model. No fish must be able to immigrate/emigrate to/from the unit, thus the use of block nets. Sampling effort should be equal between passes, hence the passes are timed and approximately equal effort is used between each pass. Finally, there must be equal sampling probability within each species and age class that is expanded separately. It is important to recognize that some inequity in effort does exist within this study, but is minimized whenever possible. Different people operating the electrofisher have different skill levels, as well as different abilities to communicate. This is why we only change electrofishers between units and not within them. Another possible source of variation in effort is lack of power equalization. Whenever a crew fails to gain positive electrical response from a fish, the generally tendency is to "turn up the juice;" it is important to always keep the same electrofisher setting for the entire habitat unit, for all three passes. Yet another source of variation in equality of effort is density of cover (i.e. large woody debris, boulders, overhanging vegetation), which tends to complicate electrofishing. Whenever possible, excessive cover was held back by a third-party crew member while electrofishing. Excessive vegetation was never removed, as cover is an important component of fish habit at.

Possible safety concerns exist, both to person and wildlife, when electricity is used in connection with water. All personnel have been CPR and First Aid certified, and made aware of the dangers of electricity, prior to the field season. Excessive mortality to fish can result from either the excessive use of power or time when electrofishing. Aside from mortality, "over-shocking" is apparent by the appearance of bruising, back deformities, and increased recovery times. Mortality was minimal throughout both seasons of this study (2.4% in 2000, and 3.02% in 2001) and only a problem with one crew member (source of most mortality). During the 2000 season, we frequently electrofished at frequencies of 50-60 mHz. In 2001, we changed our protocol to use only frequencies from 30-40 mHz, in an attempt to reduce mortality. However, mortality between years of sampling increased by 0.52%. One possible explanation to increased mortality could be the critically dry water year; fish get shocked harder when there is a lesser volume of water to power relationship. Another possible explanation could be the

change in shape and size of the electrical field (with less power) and how it relates to severity of fish response and the amount of time it takes to net a fish. High frequencies elicit a greater response from the fish, therefore making the fish easier to net, eliminating additional mortality due to over-shocking and smashing.

Temperature plays an important role in fish abundance, migration and our ability to electrofish. NMFS backpack electrofishing guidelines state that no one should electrofish in water that is expected to exceed 18 °C during that sampling day (NMFS, 1998). This upper limit for backpack electrofishing was exceeded in 16 of the 22 index reaches during the 2001 low flow season. During the 2000 season, we used an upper limit to electrofish of 20°C, and only one day of electrofishing had to be postponed, on Little Brown's Creek. In 2001, we changed our upper limit to 18 °C, and again were lucky to have to cancel only one day of electrofishing, again on Little Brown's Creek. Later in the season additional thermal/low flow problems became apparent on Little Brown's, East Weaver, and Rattlesnake Creeks, all of which were not electrofished in 2001 to minimize the risk to juvenile steelhead stocks.

Regression analysis of fish density versus temperature was examined by comparing reach densities to their corresponding thermograph summaries. The only correlation discovered existed between older juvenile steelhead (yearling+) and maximum and mean daily temperature. There was a weak to moderate correlation (R^2=0.35) between daily mean temperature and yearling and older steelhead density. There was also a moderate correlation (R^2=0.39) between seasonal maximum temperature and yearling+ steelhead density.

De-watering of index reaches in critically dry years appears to be a major problem in the Trinity basin, especially in more highly populated areas such as Weaverville. It is nearly impossible to tell if a creek should have surface flow or if it is being over-diverted by local citizens. Diversion law is enforced by the Department, further complicating any private landowner relationships if we were to "turn in" the offending over-diverters.

Recommendations

I have several recommendations that I feel will improve and focus our efforts to monitor over-summering juvenile steelhead.

More index reaches need to be selected and sampled to increase the power of possible conclusions. At present only 22 index reaches are sampled on a annual basis. A properly trained and staffed field crew should be able to sample approximately 40 reaches per season, weather and water-year permitting. I propose selecting, at the minimum, an additional nine reaches for next year.

A more statistically sound sample selection process should be developed. A simple random sample was selected over a systematic random sample because of lack of a developed sampling universe, lack of private property permission, and lack of knowledge regarding project feasibility. Once a more accurate and plausible sampling universe is developed, systematic random samples can be drawn at the proper scale a statistician deems necessary.

The sampling universe of all anadromous habitat available to steelhead in the Trinity basin needs to be expanded and ground-truthed. Many tributaries in the Trinity basin are in federal ownership (USFS or BLM), but a substantial portion still lies within private ownership. Most tributaries on federal lands have semi-current surveys, but most private land has never been surveyed. Currently, we estimate anadromous river mileage by gradient. Agreements need to be made with private landowners to survey possible steelhead tributaries. Additionally, past surveys need to be re-examined for validity of migrational barriers. Many structures previously classified as barriers are no longer considered barriers to fish passage. Debris jams have most likely moved, and small cascades we now know fish can navigate.

Finally, I would like to propose that we consider expanding our sampling effort on index reach tributaries to include downstream migrant trapping and possibly spawning surveys. Downstream migrant trapping could be used to both quantify out-migrants and examine in conjunction with a mark-recapture protocol, to what extent juvenile steelhead are leaving smaller tributary systems to over-summer in cool deep 4th and 5th order tributaries. Spawning surveys could possibly be used to correlate redd numbers with the next year's sub-yearling densities and eventually out-migrant production.

Literature Cited

- Bayley, P. B., and D.C. Dowling. 1993. The effect of habitat in biasing fish abundance and species richness estimates when using various sampling methods in streams. Hydrobiology 40: 5-14.
- Chicote, M.W. 2001 (draft). Conservation assessment of steelhead populations in Oregon. (Pre-publication draft of ODFW informational report). Portland, Oregon.
- Healey, T. P. 1970. Studies of steelhead and salmon emigration in the Trinity River. Andromous Fisheries Branch Administrative Report No. 73-1.
- Jong, B. 1998. 1998 Field Sampling of Sharber Creek (Trinity County). DFG Memorandum to files. Northcoast Califronia Anadromous Salmonid Project.

National Marine Fisheries Service. 1998. Backpack electrofishing guidelines. 4 pp.

Oregon Department of Fish and Wildlife. 2001. Status of Steelhead Populations in the Klamath Mountains Province (summary of recent findings, dated February 9, 2001).

- Platts, W.S., W.F. Megahan, and G.W. Minshall .1983. Methods for evaluating stream, riparian and biotic conditions. Intermountain Forest and Range Experiment Station. General Technical Report INT-138.
- Reynolds, J. B. 1996. Electrofishing. Pages 221-253 in B.R. Murphy and D.W. Willis, (ed.) Fisheries Techniques, 2nd Edition. American Fisheries Society, Bethesda, Maryland.
- Rodger, J.D., M.F. Solazzi, S.L. Johnson, and M.A. Buckman. 1992. Comparison of three techniques to estimate juvenile coho salmon populations in small streams. North American Journal of Fisheries Management 12: 79-86.
- Sharber, N.G. and S.W. Carothers. 1988. Influence of Electrofishing Pulse Shape on Spinal Injuries in Adult Rainbow Trout, North American Journal of Fisheries Management. 8:117-122.
- Sharber, N.G. et al. 1994. Reducing Electrofishing Induced Injury of Rainbow Trout, North American Journal of Fisheries Management. 14.
- Smith-Root. 1998. Backpack Electrofishers; Model 12-B Battery Powered Backpack Electrofisher, Smith-Root, Inc., Vancouver, Washington.

Acknowledgements:

It took a very dedicated Weaverville S-RAMP crew to fully complete two field seasons of backpack electrofishing. A special thanks to crew leader Dan Westermeyer, whose continuing effort, patience and commitment are much appreciated. Also, I would like to thank Scientific Aide Paula Whitten for her constant determination in learning an archaic expansion program and her diligence with entering and querying the data.

	Unit	habitat	Pass	Pass	Pass				Conf	Capture	Density
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	P	per m^2
									40,		
1	1	MCP	17	14	9	40	60	19.309	99	0.303	0.502512
									44,		
1	2	LGR	23	15	6	44	50	5.361	61	0.4944	0.268966
									21,		
1	3	MCP	10	6	5	21	27	7.711	43	0.3818	0.347508
									21,		
1	4	HGR	16	4	1	21	21	0.567	22	0.7778	0.478948
									34,		
2	1	TRP	20	10	4	34	36	2.665	41	0.5862	0.410238
									27,		
2	2	MCP	12	8	7	27	40	15.354	71	0.3068	0.807922
2	3	HGR	11	4	4	19	21	3.109	19,	0.5135	0.218983

Appendix 1: Individual Habitat Unit Catch Statistics 2000 Big Creek, 2000 – sub-yearling steelhead (0)

									27		
2	4	MCP	3	2	2	7	8	2.993	7, 15	0.4375	0.08993
3	1	MCP	5	0	0	5	5	0	5, 5	0	0.148609
3	2	LGR	1	1	0	2	2	0.384	2, 7	0.6667	0.096168
3	3	MCP	4	1	0	5	5	0.168	5, 5	0.8333	0.107182
3	4	STP	9	1	1	11	11	0.384	11, 12	0.7857	0.140238
3	5	LGR	7	5	2	14	15	2.274	14, 20	0.5385	0.166899
3	6	LSP	8	1	3	12	12	1.172	12, 15	0.6316	0.197238
Total						262	313	15.529	277, 339	0.4679	0.290028

Big Creek, 2000 - yearling + steelhead (1+)

	Unit	hab	Pass	Pass	Pass	T ()		05	Conf.	Capture	Density
Reach	#	type	1	2	3	Iotal	Estimate	SE	Int.	Р	per m^2
1	1	MCP	4	1	2	7	7	1.195	7, 10	0.5833	0.058626
1	2	LGR	6	0	0	6	6	0	6, 6	0	0.032276
1	3	MCP	3	1	2	6	6	1.381	6, 10	0.5455	0.077224
1	4	HGR	0	0	1	1	1	0	1, 1	0	0.022807
2	1	TRP	1	0	0	1	1	0	1, 1	0	0.011395
2	2	MCP	5	2	2	9	9	1.228	9, 12	0.6	0.181782
									1,		0.040400
2	3	HGR	1	0	0	1	1	0	1	0	0.010428
2	4	MCP	3	0	0	3	3	0	3, 3	0	0.033724
3	1	MCP	1	1	0	2	2	0.384	2, 7	0.6667	0.059444
3	2	LGR	5	1	1	7	7	0.578	7, 8	0.7	0.336589
3	3	MCP	6	2	0	8	8	0.29	8, 9	0.8	0.171491
3	4	STP	3	0	0	3	3	0	3, 3	0	0.038247
3	5	LGR	6	0	0	6	6	0	6, 6	0	0.066759
	5	2011	5	0	0	5	0		4.	0	0.000100
3	6	LSP	1	2	1	4	4	1.468	9	0.5	0.065746
									64,		
		totals	45	10	9	64	67	2.734	72	0.6337	0.062083

		hah	Pass	Pass	Pass				Conf	Capture	Density
Reach	Unit #	type	1	2	3	Total	Estimate	SE	Int	P	per m^2
	•••••	GPO	•	-	Ŭ				.34	•	por 111 2
1	1	MCP	18	14	2	34	36	2.665	41	0.5862	0.363035
			-						22,		
1	2	LGR	16	4	2	22	22	0.814	24	0.7333	0.296493
									44,		
1	3	MCP	30	11	3	44	45	1.593	48	0.6875	0.454151
									16,		
1	4	LGR	9	5	2	16	17	1.997	21	0.5714	0.33239
									24,		
1	5	MCP	18	3	3	24	24	0.887	26	0.7273	0.466589
									9,		
2	1	LGR	6	3	0	9	9	0.461	10	0.75	0.346768
									51,		
2	2	MCP	20	24	7	51	69	14.456	98	0.3566	0.781796
	0		00		~	40		1.010	40,	0 5000	4 04 5705
2	3	MCP	23	11	6	40	44	4.012	52	0.5333	1.315765
2	1	MCD	26	25	0	60	70	6 2 4 5	69, 01	0 5026	1 095612
2	4	IVICE		20	0	09	70	0.345	91	0.5050	1.905012
2	5		20	6	1	30	30	1 064	39, ⊿1	0 7358	2 357603
2	5	LGI	29	0	4	- 39		1.004	13	0.7550	2.337003
3	1	IGR	6	6	1	13	14	2 1 5 6	19,	0 5417	1 388334
Ŭ		LOIX	Ŭ	Ŭ		10		2.100	19	0.0117	1.000001
3	2	MCP	13	2	4	19	20	1,899	24	0.5938	0.790731
									47		
3	3	MCP	29	10	8	47	51	3.854	59	0.5529	0.746487
		_							15.		
3	4	LGR	9	3	3	15	16	2.126	21	0.5556	0.44254
									24,		
3	5	MCP	11	7	6	24	33	10.934	55	0.3429	0.911749
									14,		
3	6	LGR	9	4	1	14	14	0.818	16	0.7	0.363705
									33,		
3	7	MCP	22	7	4	33	34	1.793	38	0.6471	0.971121
									541,		
	Totals		304	145	64	513	565	13.914	595	0.5394	0.682317

Rattlesnake Creek, 2000 – sub-yearling steelhead (0)

Rattlesnake Creek, 2000 – yearling + steelhead (1+)

			<u> </u>		,		(= -)				
	Unit	hab	Pass	Pass	Pass				Conf.	Capture	Density
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	P	per m^2
									3,		
1	1	MCP	2	0	1	3	3	0.709	6	0.6	0.030253
									6,		
1	2	LGR	6	0	0	6	6	0	6	0	0.080862
									5,		
1	3	MCP	2	3	0	5	5	0.787	7	0.625	0.050461
									2,		
1	4	LGR	1	1	0	2	2	0.384	7	0.6667	0.039105
									1,		
1	5	MCP	1	0	0	1	1	0	1	0	0.019441
2	1	LGR	0	0	0	0	0	0	0,	0	0

									0		
									12,		
2	2	MCP	9	1	2	12	12	0.728	14	0.7059	0.135965
									5,		
2	3	MCP	4	0	1	5	5	0.444	6	0.7143	0.149519
									19,		
2	4	MCP	15	3	1	19	19	0.481	20	0.7917	0.483675
	_		-	-	-	_	-	_	2,		
2	5	LGR	2	0	0	2	2	0	2	0	0.120903
									1,		
3	1	LGR	1	0	0	1	1	0	1	0	0.099167
									5,		
3	2	MCP	4	0	1	5	5	0.444	6	0.7143	0.197683
									10,		
3	3	MCP	7	2	1	10	10	0.627	11	0.7143	0.14637
									0,		
3	4	LGR	0	0	0	0	0	0	0	0	0
									4,		
3	5	MCP	4	0	0	4	4	0	4	0	0.110515
									1,		
3	6	LGR	0	1	0	1	1	0	1	0	0.025979
									0,		
3	7	MCP	0	0	0	0	0	0	0	0	0
									76,		
		Totals	58	11	7	76	76	1.55	80	0.7308	0.091781

Soldier Creek, 2000 – sub-yearling steelhead (0)

											Density
	Unit	hab	Pass	Pass	Pass				Conf.	Capture	per
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	Р	m^2
									8,		
1	1	MCP	5	2	1	8	8	0.769	10	0.6667	0.406
									6,		
1	2	LSP	1	3	2	6	18	57.638	140	0.1224	0.612
									19,		
1	3	LGR	12	6	1	19	19	0.929	21	0.7037	0.160
									9,		
1	4	HGR	7	1	1	9	9	0.461	10	0.75	0.388
									5,		
1	5	MCP	3	1	1	5	5	0.787	7	0.625	0.179
									7,		
2	1	MCP	1	5	1	7	11	10.572	35	0.2692	0.572
									5,		
2	2	LGR	3	2	0	5	5	0.444	6	0.7143	0.171
									6,		
2	3	MCP	4	2	0	6	6	0.376	7	0.75	0.389
									7,		
2	4	LGR	6	1	0	7	7	0.124	7	0.875	0.169
									6,		
2	5	MCP	3	0	3	6	8	5.733	22	0.3333	0.221
									5,		
2	6	LGR	2	2	1	5	5	1.189	8	0.5556	0.148

									5,		
2	7	MCP	3	1	1	5	5	0.787	7	0.625	2.168
									14,		
3	1	LGR	11	2	1	14	14	0.463	15	0.7778	0.304
									4,		
3	2	MCP	3	1	0	4	4	0.205	5	0.8	0.131
									13,		
3	3	HGR	7	1	5	13	18	8.599	36	0.3333	0.275
									2,		
3	4	PP	1	1	0	2	2	0.384	7	0.6667	0.052
									2,		
3	5	MCP	2	0	0	2	2	0	2	0	0.090
									12,		
3	6	HGR	9	3	0	12	12	0.355	13	0.8	0.107
									135,		
		Totals	83	34	18	135	147	6.274	159	0.5602	0.207

Rattlesnake Creek, 2000 - yearling + steelhead (1+)

											Density
	Unit	hab	Pass	Pass	Pass				Conf.	Capture	per
Reach	#	type	1	2	3	Iotal	Estimate	SE	Int.	Р	m^2
1	1	MCD	2	0	1	1	1	0 5 4 4	4, 6	0 6667	0 202
1	I	IVICE	3	0	I	4	4	0.544	5	0.0007	0.203
1	2	LSP	3	0	2	5	5	1.189	3, 8	0.5556	0.170
									4,		
1	3	LGR	3	1	0	4	4	0.205	5	0.8	0.034
					0	_	_	0.400	5,	0.0000	0.040
1	4	HGR	4	1	0	5	5	0.168	5	0.8333	0.216
1	5	MCP	1	1	0	2	2	0 384	2, 7	0.6667	0.072
	Ŭ	- MIGI	•		Ŭ			0.001	3.	0.0001	0.072
2	1	MCP	1	2	0	3	3	0.709	6	0.6	0.156
									2,		
2	2	LGR	2	0	0	2	2	0	2	0	0.068
		MOD		0	0				4,		0.000
2	3	MCP	4	0	0	4	4	0	4	0	0.260
2	4	LGR	2	2	0	4	4	0.544	4, 6	0.6667	0.096
						•		0.0.1	3.		0.000
2	5	MCP	1	0	2	3	5	9.677	32	0.2308	0.138
									0,		
2	6	LGR	0	0	0	0	0	0	0	0	0.000
2	7		2	0	1	4	4	0 5 4 4	4,	0.6667	1 705
2	1	IVICP	3	0	1	4	4	0.544	0	0.0007	1.735
3	1	IGR	3	0	0	3	3	0	з, З	0	0.065
0		LOIN	0	0	0	0	0	0	1.	0	0.000
3	2	MCP	0	1	0	1	1	0	1	0	0.033
									10,		
3	3	HGR	5	3	2	10	11	2.434	16	0.5	0.168
				2	4	C		1 204	6,	0 5 4 5 5	0.450
3	4	MCP	2	3	1	6	0 2	1.381	10	0.5455	0.156
3	5							0.304	∠,	0.0007	0.090

									7		
									5,		
3	6	HGR	3	1	1	5	5	0.787	7	0.625	0.045
									67,		
		Totals	207	84	46	337	73	4.591	82	0.5537	0.103

Potato Creek, 2000 - sub-yearling steelhead (0)

Deeeb	Unit	hab	Pass	Pass	Pass	Total	Fatimata	05	Conf.	Capture	Density
Reach	Ħ	туре	1	2	3	Total	Estimate	SE	int.	Р	per m^2
1	1	LGR	7	3	6	16	31	28.722	16, 90	0.2105	0.360653
1	2	MCP	6	3	3	12	14	3.8	12, 22	0.4444	0.435625
1	3	LGR	4	2	0	6	6	0.376	6, 7	0.75	0.331647
1	4	MCP	0	0	0	0	0	0	0, 0	0	0
1	5	HGR	5	3	1	9	9	0.947	9, 11	0.6429	0.27456
1	6	MCP	3	7	4	14	21	0	0, 0	0	0.702883
2	7	LGR	10	3	4	17	19	3.199	17, 26	0.5	0.439807
2	8	MCP	4	2	0	6	6	0.376	6, 7	0.75	0.289061
2	9	LGR	6	0	1	7	7	0.327	7, 8	0.7778	0.163105
2	10	PP	2	0	0	2	2	0	2, 2	0	0.075811
2	11	HGR	12	5	6	23	29	7.295	23, 44	0.3966	0.423243
2	12	MCP	6	0	1	7	7	0.327	7, 8	0.7778	0.257549
		totals	65	28	26	119	151	14.634	119, 177	0.4161	0.336675

Potato Creek, 2000 - yearling + steelhead (1+)

1 01000	01001	., 2000	jean	mg ' s							
	Unit	hab	Pass	Pass	Pass				Conf.	Capture	Density
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	Р	per m^2
									0,		
1	1	LGR	0	0	0	0	0	0	0	0	0
									0,		
1	2	MCP	0	0	0	0	0	0	0	0	0
									0,		
1	3	LGR	0	0	0	0	0	0	0	0	0
									2,		
1	4	MCP	2	0	0	2	2	0	2	0	0.096578
									0,		
1	5	HGR	0	0	0	0	0	0	0	0	0
1	6	MCP	1	0	0	1	1	0	1,	0	0.033471

									1		
									0,		
2	7	LGR	0	0	0	0	0	0	0	0	0
									З,		
2	8	MCP	3	0	0	3	3	0	3	0	0.144531
									1,		
2	9	LGR	1	0	0	1	1	0	1	0	0.023301
									3,		
2	10	PP	1	1	1	3	3	1.271	8	0.5	0.113717
									1,		
2	11	HGR	0	1	0	1	1	0	1	0	0.014595
									0,		
2	12	MCP	0	0	0	0	0	0	0	0	0
									11,		
		totals	8	2	1	11	11	0.575	12	0.7333	0.024526

EFNF Trinity, 2000 – sub-yearling steelhead (0)

											Density
	Unit	hab	Pass	Pass	Pass				Conf.	Capture	per
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	Р	m^2
1	1	LGR	0	0	0	0	0	0	0	0	0.000
									9,		
1	2	MCP	5	2	2	9	9	1.228	12	0.6	0.179
									27,		
1	3	LGR	12	11	4	27	33	6.673	47	0.4219	0.076
									22,		
1	4	MCP	14	3	5	22	24	2.908	30	0.5366	1.527
									8,		
2	1	LGR	4	1	3	8	10	4.718	21	0.381	0.074
									19,		
2	2	MCP	11	6	2	19	20	1.899	24	0.5938	0.117
									10,		
2	3	MCP	8	1	1	10	10	0.419	11	0.7692	0.058
									18,		
2	4	LGR	13	3	2	18	18	0.809	20	0.72	0.189
									7,		
3	1	LGR	5	2	0	7	7	0.327	8	0.7778	0.137
									14,		
3	2	RUN	10	3	1	14	14	0.633	15	0.7368	0.096
									22,		
3	3	MCP	13	7	2	22	23	1.836	27	0.6111	0.145
									5,		
3	4	LGR	3	1	1	5	5	0.787	7	0.625	0.053
									162,		
		Totals	98	40	23	161	173	7.487	192	0.5458	0.112

EFNF Trinity, 2000 – yearling + steelhead (1+)

											Density
	Unit	hab	Pass	Pass	Pass				Conf.	Capture	per
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	P	m^2
1	1	LGR	0	0	0	0	0	0	0	0	0.000

1	2	MCP	4	1	0	5	5	0 168	5, 5	0 8333	0 100
	2	INICI	т	•	0	5	5	0.100	10	0.0000	0.100
1	3	LGR	5	3	2	10	11	2.434	10,	0.5	0.025
									4		
1	4	MCP	2	1	1	4	4	0.969	7	0.5714	0.254
									3,		
2	1	LGR	2	1	0	3	3	0.266	4	0.75	0.022
									2,		
2	2	MCP	2	0	0	2	2	0	2	0	0.012
									3,		
2	3	MCP	2	1	0	3	3	0.266	4	0.75	0.017
									2,		
2	4	LGR	2	0	0	2	2	0	2	0	0.021
									3,		
3	1	LGR	2	0	1	3	3	0.709	6	0.6	0.059
									7,		
3	2	RUN	7	0	0	7	7	0	7	0	0.048
									11,		
3	3	MCP	11	0	0	11	11	0	11	0	0.069
									4,		
3	4	LGR	3	1	0	4	4	0.205	5	0.8	0.043
									54,		
		Totals	42	8	4	54	54	0.956	56	0.7714	0.035

Little Brown's Creek, 2000 – sub-yearling steelhead (0)

									_		Density
	Unit	hab	Pass	Pass	Pass				Conf.	Capture	per
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	Р	m^2
									1,		
1	1	LGR	1	0	0	1	1	0	1	0	0.024
									6,		
1	2	MCP	5	1	0	6	6	0.142	6	0.8571	0.089
									З,		
1	3	LGR	1	2	0	3	3	0.709	6	0.6	0.032
									З,		
1	4	MCP	0	2	1	3	5	9.677	32	0.2308	0.111
									3,		
1	5	LGR	1	1	1	3	3	1.271	8	0.5	0.069
									3,		
2	1	MCP	0	2	1	3	5	9.677	32	0.2308	0.056
									1,		
2	2	STP	0	0	1	1	1	0	1	0	0.080
									7,		
2	3	HGR	1	5	1	7	11	10.572	35	0.2692	0.394
									7,		
2	4	LGR	4	2	1	7	7	0.869	9	0.6364	0.099
									12,		
3	1	MCP	9	2	1	12	12	0.532	13	0.75	0.135
									31,		
3	2	LGR	13	7	11	31	77	77.769	232	0.1566	6.153
									7,		
3	3	MCP	3	3	1	7	7	1.195	10	0.5833	0.251

									14,		
3	4	LGR	9	4	1	14	14	0.818	16	0.7	0.198
									10,		
3	5	MCP	4	2	4	10	20	25.403	73	0.2	0.293
									108,		
		totals	51	33	24	108	153	25.071	203	0.3333	0.202

Little Brown's Creek, 2000 – yearling + steelhead (1+)

											Density
	Unit	hab	Pass	Pass	Pass				Conf.	Capture	per
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	Р	m^2
									0,		
1	1	LGR	0	0	0	0	0	0	0	0	0.000
									6,		
1	2	MCP	3	2	1	6	6	1.002	9	0.6	0.089
									1,		
1	3	LGR	1	0	0	1	1	0	1	0	0.011
									З,		
1	4	MCP	3	0	0	3	3	0	3	0	0.067
									1,		
1	5	LGR	0	1	0	1	1	0	1	0	0.023
			-						7,		
2	1	MCP	2	3	2	7	11	10.572	35	0.2692	0.124
									2,		
2	2	STP	2	0	0	2	2	0	2	0	0.160
		_							8,		
2	3	HGR	3	4	1	8	9	2.612	15	0.4706	0.322
									З,		
2	4	LGR	2	1	0	3	3	0.266	4	0.75	0.042
				-	-				4,		
3	1	MCP	2	2	0	4	4	0.544	6	0.6667	0.045
									6,		
3	2	LGR	4	0	2	6	6	1.002	9	0.6	0.479
									3,		
3	3	MCP	2	1	0	3	3	0.266	4	0.75	0.107
				-	-	-	_		0,		
3	4	LGR	0	0	0	0	0	0	0	0	0.000
_	_		-	_	_				3,		
3	5	MCP	1	2	0	3	3	0.709	6	0.6	0.044
					-				47,		
		totals	25	16	6	47	53	5.178	63	0.5054	0.070

East Weaver Creek, 2000 - sub-yearling steelhead (0)

	Unit	hab	Pass	Pass	Pass				Conf.	Capture	Density
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	P	per m ²
									69,		
1	1	RUN	42	18	9	69	75	4.46	84	0.561	0.780021
									67,		
1	2	LGR	30	23	14	67	95	19.974	135	0.3317	0.35232
									10,		
1	3	MCP	2	5	3	10	49	226.785	505	0.0725	1.155639
									8,		
1	4	LGR	4	2	2	8	9	2.612	15	0.4706	0.285788

									35,		
2	1	LGR	18	10	7	35	42	6.858	56	0.4375	1.062828
									19,		
2	2	MCP	11	5	3	19	20	2.112	24	0.5758	0.914269
									19,		
2	3	HGR	9	9	1	19	20	2.112	24	0.5758	0.802617
									13,		
2	4	PP	9	1	3	13	13	1.088	15	0.65	1.278586
									17,		
2	5	LGR	12	1	4	17	17	1.215	20	0.6538	0.249145
									5,		
2	5.1	SC	2	1	2	5	6	3.572	15	0.3846	0.451627
									282,		
		totals	139	75	48	262	346	20.166	362	0.4274	0.560158

East Weaver Creek, 2000 - yearling + steelhead (1+)

	Unit	hab	Pass	Pass	Pass				Conf.	Capture	Density
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	Р	per m^2
									3,		
1	1	RUN	1	2	0	3	3	0.709	6	0.6	0.031201
									13,		
1	2	LGR	9	3	1	13	13	0.677	14	0.7222	0.048212
									9,		
1	3	MCP	4	3	2	9	10	2.704	16	0.4737	0.235845
									1,		
1	4	LGR	0	1	0	1	1	0	1	0	0.031754
									2,		
2	1	LGR	1	0	1	2	2	1.038	15	0.5	0.050611
									4,		
2	2	MCP	4	0	0	4	4	0	4	0	0.182854
									5,		
2	3	HGR	3	2	0	5	5	0.444	6	0.7143	0.200654
									0,		
2	4	PP	0	0	0	0	0	0	0	0	0
									З,		
2	5	LGR	1	1	1	3	3	1.271	8	0.5	0.043967
									0,		
2	5.1	SC	0	0	0	0	0	0	0	0	0

Appendix 2: Individual Habitat Unit Catch Statistics 2001

Little C	the Gruss Function and Fourier and Fourier and Construction of the second state of the											
	Unit	hab	Pass	Pass	Pass				Conf.	Capture	Density	
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	Р	per m^2	
									2,			
1	1	MCP	1	1	0	2	2	0.384	7	0.6667	0.088518	
									1,			
1	2	HGR	1	0	0	1	1	0	1	0	0.040405	
1	3		1	1	0	2	2	0.384	2,	0.6667	0.022554	

Little Grass Valley Creek, 2001 – sub-yearling steelhead (0)

		RUN							7		
1	4	LGR	1	3	0	4	4	0.969	4, 7	0.5714	0.136165
2	1	MCP	4	1	2	7	7	1.195	7, 10	0.5833	0.246796
2	2	LGR	3	0	0	3	3	0	3, 3	0	0.16375
2	3	STP	2	3	1	6	6	1.381	6, 10	0.5455	0.088591
2	4	LGR	2	2	3	7	24	84.852	7, 200	0.1061	0.745547
3	1	MCP	1	0	0	1	1	0	1, 1	0	0.085836
3	2	LGR	2	1	2	5	6	3.572	5, 15	0.3846	0.171217
3	3	MCP	1	1	0	2	2	0.384	2, 7	0.6667	0.118479
3	4	STP	0	1	1	2	2	1.876	2, 26	0.4	0.02875
3	5	LGR	2	0	0	2	2	0	2, 2	0	0.102954
3	6	MCP	1	2	1	4	4	1.468	4, 9	0.5	0.156224
							66	14.13	48, 93	0.3556	0.134647

Little Grass Valley Creek, 2001 – yearling + steelhead (1+)

	Unit	hab	Pass	Pass	Pass	0	× ×	/	Conf.	Capture	Density
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	P	per m^2
									3,		
1	1	MCP	2	1	0	3	3	0.266	4	0.75	0.132778
									2,		
1	2	HGR	1	0	1	2	2	1.038	15	0.5	0.08081
									5,		
1	3	RUN	5	0	0	5	5	0	5	0	0.056385
				_	_				1,	-	
1	4	LGR	1	0	0	1	1	0	1	0	0.034041
									1,		
2	1	MCP	1	0	0	1	1	0	1	0	0.035257
									2,		
2	2	LGR	1	0	1	2	2	1.038	15	0.5	0.109167
									6,		
2	3	STP	5	0	1	6	6	0.376	7	0.75	0.088591
									2,		
2	4	LGR	2	0	0	2	2	0	2	0	0.062129
									1,		
3	1	MCP	1	0	0	1	1	0	1	0	0.085836
									1,		
3	2	LGR	1	0	0	1	1	0	1	0	0.028536
									2,		
3	3	MCP	0	2	0	2	2	1.038	15	0.5	0.118479
									5,		
3	4	STP	5	0	0	5	5	0	5	0	0.071874

3	5	LGR	0	0	0	0	0	0	0, 0	0	0
3	6	MCP	2	0	0	2	2	0	2, 2	0	0.078112
							33	0.666	33, 34	0.7857	0.067324

Big Creek, 2001 – sub-yearling steelhead (0)

	Unit	hab	Pass	Pass	Pass				Conf.	Capture	Density
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	Р	per m^2
									31,		
1	1	MCP	20	10	1	31	31	1.055	33	0.7209	0.225276
									46,		
1	2	LGR	31	12	3	46	47	1.638	50	0.6866	0.232748
									28,		
1	3	MCP	17	8	3	28	29	1.928	33	0.6222	0.362419
									11,		
1	4	HGR	10	0	1	11	11	0.218	11	0.8462	0.255403
									8,		
2	1	LSP	4	2	2	8	9	2.612	15	0.4706	0.085882
									6,		
2	2	MCP	2	2	2	6	8	5.733	22	0.3333	0.146831
									13,		
2	3	HGR	6	4	3	13	16	5.107	27	0.4063	0.149498
									8,		
2	4	MCP	4	3	1	8	8	1.056	10	0.6154	0.107263
									9,		
3	1	MCP	4	4	1	9	9	1.228	12	0.6	0.248015
									4,		
3	2	LGR	2	1	1	4	4	0.969	7	0.5714	0.190747
									5,		
3	3	MCP	4	1	0	5	5	0.168	5	0.8333	0.122707
									4,		
3	4	LGR	1	2	1	4	4	1.468	9	0.5	0.095679
									11,		
3	5	STP	6	4	1	11	11	1.02	13	0.6471	0.16714
									186,		
		totals					192	7.066	214	0.5662	0.19026

Big Creek, 2001 - yearling + steelhead (1+)

	Unit	hab	Pass	Pass	Pass				Conf.	Capture	Density
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	P	per m^2
									10,		
1	1	MCP	6	4	0	10	10	0.627	11	0.7143	0.07267
									8,		
1	2	LGR	5	3	0	8	8	0.512	9	0.7273	0.039617
									11,		
1	3	MCP	9	2	0	11	11	0.218	11	0.8462	0.137469
									1,		
1	4	HGR	0	0	1	1	1	0	1	0	0.023218
2	1	LSP	2	4	0	6	6	1.002	6,	0.6	0.057254

									9		
_	_			-	-	_		_	3,	_	
2	2	MCP	3	0	0	3	3	0	3	0	0.055062
									6,		
2	3	HGR	5	1	0	6	6	0.142	6	0.8571	0.056062
									2,		
2	4	MCP	2	0	0	2	2	0	2	0	0.026816
									0,		
3	1	MCP	0	0	0	0	0	0	0	0	0
									3,		
3	2	LGR	1	1	1	3	3	1.271	8	0.5	0.14306
									4,		
3	3	MCP	3	1	0	4	4	0.205	5	0.8	0.098165
									1,		
3	4	LGR	1	0	0	1	1	0	1	0	0.02392
									3,		
3	5	STP	3	0	0	3	3	0	3	0	0.045584
									58,		
		totals					59	1.505	62	0.716	0.058465

Soldier Creek, 2001 – sub-yearling steelhead (0)

		,		5	0	· · ·	/				
Reach	Unit #	hab type	Pass 1	Pass 2	Pass 3	Total	Estimate	SE	Conf. Int.	Capture P	Density per M^2
1	1	MCP	5	1	3	9	10	2.704	9, 16	0.4737	0.664435
1	2	LSP	1	3	2	6	18	57 638	6, 140	0 1224	0.842387
1	2		23	0	2	40	46	5 5 2 8	40,	0.1221	0.502260
1	3		23	3	1	40	40	0.60	9,	0.4019	0.332203
	4		0	2		9	9	0.09	10,	0.0923	0.331195
1	5	MCP	6	1	3	10	11	2.434	16 8	0.5	0.433708
2	1	MCP	3	2	3	8	13	12.52	40	0.2581	0.726909
2	2	LGR	4	4	1	9	9	1.228	9, 12	0.6	0.346599
2	3	MCP	2	3	1	6	6	1.381	6, 10	0.5455	0.434903
2	4	LGR	4	4	3	11	16	9.797	11, 37	0.3056	0.384423
2	5	МСР	6	2	1	9	9	0.69	9, 11	0.6923	0.33637
2	6	LGR	6	0	1	7	7	0.327	7,	0.7778	0.209297
2	7	MCP	12	0	3	15	15	0.768	15, 17	0 7143	0.442956
2	,	INICI	12	0	5	15	10	0.700	10,	0.7143	0.442330
3	1	LGR	4	2	4	10	20	25.403	73	0.2	0.476804
3	2	MCP	8	5	2	15	16	2.126	15, 21	0.5556	0.924431
3	3	SRN	13	5	3	21	22	1.919	21, 26	0.6	0.320352

									7,		
3	4	P.P.	7	0	0	7	7	0	7	0	0.268329
									11,		
3	5	MCP	6	1	0	7	11	1.02	13	0.6471	0.903144
									11,		
3	6	HGR	6	4	1	11	11	1.02	13	0.6471	0.256448
									225,		
		totals					256	14.92	283	0.4582	0.449877

Soldier Creek, 2001 – yearling + steelhead (1+)

	Unit	hab	Pass	Pass	Pass				Conf.	Capture	Density
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	Р	per M^2
			_		-				3,		
1	1	MCP	2	1	0	3	3	0.266	4	0.75	0.19933
1	2		0	0	0	0	0	0	0,	0	0
	2	201	0	0	0	0	0	0	3	0	0
1	3	LGR	3	0	0	3	3	0	3	0	0.038626
									1,		
1	4	HGR	1	0	0	1	1	0	1	0	0.036799
1	5	MCP	1	0	0	1	1	0	1, 1	0	0 039428
				0	0		•	Ŭ	3.		0.000120
2	1	MCP	3	0	0	3	3	0	3	0	0.167748
									3,		
2	2	LGR	2	1	0	3	3	0.266	4	0.75	0.115533
2	2		1	0	0	4	4	0	1,	0	0.070404
2	3	IVICP	I	0	0	I	1	0	1	0	0.072404
2	4	LGR	1	0	0	1	1	0	1	0	0.024026
									1,		
2	5	MCP	0	1	0	1	1	0	1	0	0.037374
2	6		0	0	1	1	1	0	1,	0	0 0200
Z	0	LGK	0	0	1	1	1	0	2	0	0.0299
2	7	MCP	1	1	0	2	2	0.384	7	0.6667	0.059061
									1,		
3	1	LGR	1	0	0	1	1	0	1	0	0.02384
				0	0			0	4,	0	0.004400
3	2	INICP	4	0	0	4	4	0	4	0	0.231108
3	3	SRN	5	1	0	6	6	0.142	0, 6	0.8571	0.087369
									1,		
3	4	P.P.	1	0	0	1	1	0	1	0	0.038333
-	_				-	_			3,		
3	5	MCP	2	0	0	2	3	0	3	0	0.246312
3	6	HGR	3	0	0	3	3	0	3,	0	0.06994
<u>J</u>					0	5	5		38.	0	0.00004
		totals					38	0.413	39	0.8444	0.066779

Potato Creek, 2001 - sub-yearling steelhead (0)

	Unit	hab	Pass	Pass	Pass				Conf.	Capture	Density
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	Р	per m^2
									25,		
1	1	LGR	16	6	3	25	25	1.795	30	0.625	0.267571
									25,		
1	2	MCP	14	5	6	25	25	4.904	39	0.463	1.070645
									13,		
1	3	LGR	9	3	1	13	13	0.677	14	0.7222	0.526686
									11,		
1	4	MCP	5	2	4	11	11	9.797	37	0.3056	0.486531
									6,		
1	5	HGR	3	2	1	6	6	1.002	9	0.6	0.271586
									39,		
1	6	MCP	25	8	6	39	39	2.62	46	0.6	0.869922
									31,		
2	1	LGR	15	11	5	31	31	6.235	50	0.4429	0.496251
									14,		
2	2	MCP	8	4	2	14	14	1.229	17	0.6364	0.66975
									11,		
2	3	LGP	9	0	2	11	11	0.575	12	0.7333	0.214497
									4,		
2	4	PP	2	2	0	4	4	0.544	6	0.6667	0.144326
									17,		
2	5	HGR	13	4	0	17	17	0.389	18	0.8095	0.24681
									0,		
2	6	MCP	1	2	4	7	7	0	0	0	0.24527
									203,		
		totals					203	10.994	253	0.5025	0.413621

Potato Creek, 2001 – yearling + steelhead (1+)

	Unit	hab	Pass	Pass	Pass				Conf.	Capture	Density
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	P	per m^2
									0,		
1	1	LGR	0	0	0	0	0	0	0	0	0
1	2	MCP	1	0	1	2	2	1.038	2, 15	0.5	0.085652
									0.		
1	3	LGR	0	0	0	0	0	0	0	0	0
									2,		
1	4	MCP	2	0	0	2	2	0	2	0	0.08846
									0,		
1	5	HGR	0	0	0	0	0	0	0	0	0
									3,		
1	6	MCP	3	0	0	3	3	0	3	0	0.066917
									4,		
2	1	LGR	4	0	0	4	4	0	4	0	0.064032
									6,		
2	2	MCP	5	1	0	6	6	0.142	6	0.8571	0.287036
									2,		
2	3	LGP	2	0	0	2	2	0	2	0	0.038999
									4,		
2	4	PP	3	1	0	4	4	0.205	5	0.8	0.144326
2	5		2	0	0	2	2	0	2,	0	0.029037

		HGR							2		
									7,		
2	6	MCP	5	1	1	7	7	0.578	8	0.7	0.24527
									32,		
		totals					32	0.482	33	0.8205	0.065201

EFNF Trinity River, 2001 – sub-yearling steelhead (0)

	Unit	hab	Pass	Pass	Pass				Conf.	Capture	Density
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	Р	per m^2
									9,		
1	1	LGR	6	3	0	9	9	0.461	10	0.75	0.417563
									18,		
1	2	MCP	12	1	5	18	19	2.225	24	0.5625	0.399439
									42,		
1	3	LGR	28	9	5	42	44	2.309	49	0.6269	0.13086
									11,		
1	4	MCP	7	2	2	11	11	1.02	13	0.6471	0.07629
									15,		
2	1	LGR	9	5	1	15	15	0.955	17	0.6818	0.125355
									20,		
2	2	MCP	13	4	3	20	21	1.809	25	0.6061	0.192211
									24,		
2	3	MCP	16	8	0	24	24	0.752	26	0.75	0.215816
									16,		
2	4	LGR	12	2	2	16	16	0.725	18	0.7273	0.15432
									25,		
3	1	LGR	15	9	1	25	25	1.134	27	0.6944	0.427136
									39,		
3	2	RUN	25	10	4	39	41	2.337	46	0.619	0.340523
									70,		
3	3	MCP	42	12	16	70	82	8.069	98	0.4667	0.583753
									52,		
3	4	LGR	33	16	3	52	54	2.218	58	0.65	0.230654
									350,		
		totals					361	8.625	384	0.5839	0.233375

EFNF Trinity River, 2001 – yearling + steelhead (1+)

		/ = -= · •= ;	, _ • • -	J	0		- ()				
	Unit	hab	Pass	Pass	Pass				Conf.	Capture	Density
Reach	#	type	1	2	3	Total	Estimate	SE	Int.	P	per m^2
									0,		
1	1	LGR	0	0	0	0	0	0	0	0	0
									3,		
1	2	MCP	3	0	0	3	3	0	3	0	0.063069
									16,		
1	3	LGR	11	5	0	16	16	0.561	17	0.7619	0.047585
									10,		
1	4	MCP	6	3	1	10	10	0.859	12	0.6667	0.069355
									0,		
2	1	LGR	0	0	0	0	0	0	0	0	0
									З,		
2	2	MCP	2	1	0	3	3	0.266	4	0.75	0.027459
									2,		
2	3	MCP	1	1	0	2	2	0.384	7	0.6667	0.017985
2	4	LGR	1	0	0	1	1	0	1,	0	0.009645

									1		
									0,		
3	1	LGR	0	0	0	0	0	0	0	0	0
									3,		
3	2	RUN	3	0	0	3	3	0	3	0	0.024916
									6,		
3	3	MCP	6	0	0	6	6	0	6	0	0.042714
									13,		
3	4	LGR	10	2	1	13	13	0.495	14	0.7647	0.055528
									57,		
		totals					57	0.911	59	0.7808	0.036849

Appendix 3: Reach Descriptions

Soldier Creek

Reach	1	2	3	total
Location	N40 41.418,	N40 41.418,	N40 41.469,	
	W123 02.276	W123 02.997	W123 03.165	
Directions to:	3.5 MILES up	Go up Soldier	Go up Soldier	
	Dutch Creek to	Pass Rd about 2	Pass Rd. to 1st	
	Soldier Pass	miles. Pull out	culvert, go	
	then proceed	at grass turn out	down stream	
	up 1/4 mile.	on left, start at	100yds flag	
		entry to creek.	before culvert	
Length (ft)	188.5	214.3	259.6	662.4
Area (sq. ft)	2194.14	2433.8	3764.2	8392.14
Volume (cu. Ft)	1711.42	1776.67	2446.73	5934.83
Mean Width	11.64	11.36	14.5	12.48
Mean Depth	0.78	0.72	0.87	0.72
Max Pool Depth	2.0	1.7	2.4	2.4
Mean Residual	1.2	0.91	1.2	1.085
Pool Depth				
Dominant	Boulder	Cobble	Boulder	Boulder
substrate				
Sub-dominant	Gravel	Gravel	Sand	Gravel
substrate				
% instream	36%	29.0%	37.5%	33.89%
cover				
Dominant cover	Boulder/cobble	Boulder/cobble	Boulder/cobble	Boulder/cobble
% Canopy cover	76%	75.7%	71.7%	74.5%
Mean Water	14.90	14.33	13.75	14.33
Temp. (°C)*				
Max Water	19.01	17.45	16.79	19.01

Temp. (°C)*		
Major changes		No major
2000 to 2001		changes in
		2001

Big Creek

Reach	1	2	3	total
Location	N40 36.909,	N40 37.975,	N40 39.212,	
	W123 09.679	W123 09.764	W123 09.425	
Directions to:	200 ft before	Below	Upstream of	
	32N23 turn off	Donaldson	Packer's Creek	
	Big Creek Rd.	Creek	confluence	
		confluence		
Length (ft)	269.1	213.6	323.3	806.0
Area (sq. ft)	4592.6	3466.87	3553.4	11612.9
Volume (cu. Ft)	4018.6	3553.5	2771.6	10257.1
Mean Width	16.375	16.25	11.2	14.13
Mean Depth	0.875	1.025	0.78	0.88
Max Pool Depth	2.0	1.9	2.0	2.0
Mean Residual	1.15	0.57	1.21	0.81
Pool Depth				
Dominant	Boulder	Boulder	Bedrock	Boulder
substrate				
Sub-dominant	Cobble	Cobble	Gravel	Cobble
substrate				
% instream	36.25%	31.25%	32.5%	33.2%
cover				
Dominant cover	Boulder/cobble	Boulder/cobble	Boulder/cobble	Boulder/cobble
% Canopy cover	78.75%	80.0%	70.5%	75.6%
Mean Water	13.61	13.29	13.54	13.48
Temp. (°C)*				
Max Water	18.42	17.41	17.94	18.42
Temp. (°C)*				
Major changes			Dropped upper	
2000 to 2001			2 units in 2001	

*Water temperatures are for August-September, 2001.

Reach	1	2	3	total
Location	N40 48.780,	N40 49.620,	N40 50.870,	
	W123 07.227	W123 07.528	W123 07.969	
Directions to:	Funky Nugget	Turn left @	N.Fork Rd to	
	mine 3.5 miles	mile marker 5,	the end, access	
	from Hwy 299	7/10 of a mile	rd. to gate	
		above 2nd		
		bridge		
Length (ft)	308.3	223.3	214.7	746.3
Area (sq. ft)	5659.8	6180.2	4840.8	16680.8
Volume (cu. Ft)	6933.3	5871.2	5203.8	17954.3
Mean Width	20.65	27.93	22.13	23.56
Mean Depth	1.23	0.95	1.08	1.08
Max Pool Depth	2.7	1.6	2.6	2.7
Mean Residual	1.4	0.9	1.8	1.28
Pool Depth				
Dominant	Boulder	Boulder	Boulder	Boulder
substrate				
Sub-dominant	Cobble	Cobble	Cobble	Cobble
substrate				
% instream	29.0%	44.0%	35.0%	35.8%
cover				
Dominant cover	Boulder/cobble	Boulder/cobble	Boulder/cobble	Boulder/cobble
% Canopy cover	68.0%	54.0%	55.0%	58.75%
Mean Water	17.51	17.47	16.69	17.23
Temp. (°C)*				
Max Water	23.83	22.53	21.63	23.83
Temp. (°C)*				
· · · · /				
Major changes	Surface area			
2000 to 2001	diminished due			
	to low water			

East Fork North Fork Trinity River

*Water temperatures are for August-September, 2001.

Potato Creek

Reach	1	2	total
Location	N40 30.091,	N40 29.468,	
	W123 02.350	W123 01.719	

Directions to:	East Fork rd.	Potato Crk. Rd.	
	to Potato Crk.	to first creek	
	Bridge-	crossing, 50 ft.	
	upstream 120	up stream	
	yds up Potato		
	Crk. Rd.		
Length (ft)	248.5	255.6	504.1
Area (sq. ft)	2362.25	2463.5	4825.75
Volume (cu. Ft)	1653.75	2143.2	3797.0
Mean Width (ft)	9.14	10.1	9.62
Mean Depth (ft)	0.70	0.87	0.79
Max Pool Depth	2.05	2.75	2.75
Mean Residual	1.5	1.9	1.7
Pool Depth			
_			
Dominant	Cobble	Cobble	Cobble
substrate			
Sub-dominant	Boulder	Boulder	Boulder
substrate			
% instream	35.0%	41.7%	38.3%
cover			
Dominant cover	Boulder/cobble	Boulder/cobble	Boulder/cobble
% Canopy cover	61.7%	66.3%	64.0%
Mean Water	15.00	14.31	14.65
Temp. (°C)*			
Max Water	20.22	17.92	20.22
Temp. (°C)*			
Major changes		Large tree fell	
2000 to 2001		in unit	

East Weaver Creek

Reach	1	2	total
Location	N40 44.091,	N40 46.427,	
	W122 55.703	W122 55.448	
Directions to:	Browns Ranch	East Weaver	
	Rd. to	campground	
	swimming	bridge,	
	hole, up stream	upstream 100	
	100 yds	yds	

Length (ft)	299.9	178.0	477.9
Area (sq. ft)	4041.15	1981.72	6022.9
Volume (cu. Ft)	2626.75	1255.03	3881.7
Mean Width (ft)	13.48	11.13	12.07
Mean Depth (ft)	0.65	0.63	0.64
Max Pool Depth	1.6	1.3	1.6
Mean Residual	0.8	0.9	0.87
Pool Depth			
Dominant	Cobble	Boulder	Cobble
substrate			
Sub-dominant	Boulder	Cobble	Boulder
substrate			
% instream	28%	34%	31.5%
cover			
Dominant cover	Boulder/cobble	Boulder/cobble	Boulder/cobble
% Canopy cover	31%	44%	39.4%
Mean Water	18.77	15.40	17.08
Temp. (°C)*			
Max Water	29.38	21.12	29.38
Temp. (°C)*			
Major changes	Creek dry due	Extremely low	Not
2000 to 2001	to diversions	flow	Electrofished
			in 2001

Rattlesnake Creek

Reach	1	2	3	total
Location	N40 22.235,	N40 23.166,	N40 23.465,	
	W123 18.763	W123 17.499	W123 16.713	
Directions to:	100 yds up	Hwy 36 &	Hwy 36 and	
	stream of the	USFS road 14,	Rattlesnake	
	confluence	turn east @	Rd., drive up	
	with South	road 14, u-turn	Rattlesnake Rd.	
	Fork at Hell	and drive on	.2 miles, site is	
	Gate	old	on right, also	
	campground	dirt/pavement	about .2 miles	
		rd 0.2 miles to	below	
		end. Walk up	confluence of	
		about 75yds.	Post Crk.	

Length (ft)	259.9	202.3	218.1	680.3
Area (sq. ft)	4035.3	2189.3	2686.2	8910.8
Volume (cu. Ft)	4559.8	2233.1	1879.6	8672.5
Mean Width	15.6	11.54	11.91	12.88
Mean Depth	1.13	1.02	0.70	0.92
Max Pool Depth	2.5	3.0	2.8	3.0
Mean Residual	1.82	2.4	1.56	1.76
Pool Depth				
Dominant	Boulder	Boulder	Boulder	Boulder
substrate				
Sub-dominant	Bedrock	Bedrock	Cobble	Bedrock
substrate				
% instream	37.0%	30.0%	37.1%	35.0%
cover				
Dominant cover	Boulder/cobble	Boulder/cobble	Boulder/cobble	Boulder/cobble
% Canopy cover	53.0%	44.0%	70.7%	57.6%
Mean Water	16.12	15.62	15.37	15.70
Temp. (°C)*				
Max Water	23.12	21.17	19.99	23.12
Temp. (°C)*				
Major changes	Considerably	Stagnant pools,	Reach is dry	Not
2000 to 2001	lower flow	with algal		Electrofished
		sheen		in 2001 due to
				critically-dry
				water year

Little Brown's Creek

Reach	1	2	3	total
Location	N40 41.303,	N40 41.816,	N40 42.027,	
	W122 56.144	W122 55.400	W122 55.238	
Directions to:	Little Browns	Little Browns	.5 miles up	
	Creek bridge	Mt. Rd. to	Little Browns	
	on hwy 299,	Browns Mt. Rd.	Mtn. Rd. to 1st	
	100 ft.	to 1st bridge,	dirt rd. on right	
	upstream	100yds. Up	after Browns	
		stream from	Mtn. Rd.	
		bridge		
Length (ft)	282.2	263.8	353.7	899.7

Area (sq. ft)	3125.7	2125.2	2887.5	8138.4
Volume (cu. Ft)	2000.4	2023.1	1645.8	5669.3
Mean Width	11.36	10.2	13.52	11.52
Mean Depth	0.64	0.94	0.57	0.72
Max Pool Depth	2.0	2.7	1.8	2.7
Mean Residual	1.53	1.96	1.37	1.63
Pool Depth				
Dominant	Cobble	Bedrock	Cobble	Cobble
substrate				
Sub-dominant	Sand	Boulder	Gravel	Gravel
substrate				
% instream	26.0%	38.0%	18.0%	27.0%
cover				
Dominant cover	Boulder/cobble	Boulder/cobble	Boulder/cobble	Boulder/cobble
% Canopy cover	76%	38%	69%	60.3%
Mean Water	16.16	18.70	16.2	17.06
Temp. (°C)*				
Max Water	23.79	35.74**	28.57	35.74**
Temp. (°C)*				
<u>-</u> - (-)				
Major changes	Dry due to			Not
2000 to 2001	over-diversion			electrofished
				in 2001 due to
				critically-dry

*Water temperatures are for August-September, 2001. **Extremely high water temperature probably due to thermograph de-watering.

	/			
Reach	1	2	3	total
Location	N40 39.660,	N40 39.194,	N40 38.751,	
	W122 46.835	W122 45.420	W122 44.822	
Directions to:	Mile Post	Mile Post	Mile Post	
	68.63 on Hwy	marker 70,	70.73, Hwy 299	
	299, turn out	Hwy 299	Large pull-out	
	on right side of	downstream of	left side of hwy	
	Hwy near	drive way to		
	40mph sign	Ludden Tree		
		Farm		
Length (ft)	218.0	202.0	213.0	633.0

Little Grass Valley Creek

Area (sq. ft)	1779.5	1577.4	1917.1	5274.0
Volume (cu. Ft)	1156.7	946.5	1303.6	3406.8
Mean Width	8.1	7.8	8.82	8.3
Mean Depth	0.65	0.60	0.68	0.65
Max Pool Depth	1.6	1.8	1.6	1.8
Mean Residual	1.2	1.13	1.2	1.17
Pool Depth				
Dominant substrate	Sand	Bedrock	Sand	Sand
Sub-dominant	Sand	Sand	Boulder	Boulder
substrate				
% instream	19.0%	21.0%	25.0%	22.1%
cover				
Dominant cover	Boulder/cobble	Boulder/cobble	Boulder/cobble	Boulder/cobble
% Canopy cover	84%	83%	86%	84.25%
Mean Water	13.35	12.96	12.67	12.99
Temp. (°C)*				
Max Water	17.83	16.78	16.60	17.83
Temp. (°C)*				
Major changes	Not surveyed	Not surveyed in	Not surveyed in	Not surveyed
2000 to 2001	in 2000	2000	2000	in 2000

Appendix 4: Trinity River Sampling Universe- 1st –4th order anadromous tributaries.

South Fork Basin	Anadromous distance	Main-stem Trinity	Anadromous distance
	(km)		(km)
Upper South Fork	16.50	Deadwood	3.78
East Fork South Fork	14.97	Rush	14.48
Dark Canyon	1.21	Grass Valley	16.80
Prospect	1.01	Little Grass Valley	9.00
Smoky	5.79	Weaver	10.53
Silver	2.58	East Weaver	8.37
Farley	0.40	West Weaver	12.36
Rattlesnake	15.29	Little Browns	15.42
Little Rattlesnake	0.32	Reading	18.03
Post	5.90	Browns	38.63
North Post	0.09	East Fork Browns	11.01
Glade	0.97	Chanchellula	3.22
Glen	1.10	Maxwell	6.81
Little Bear Wallow	0.37	Dutch	5.55
Plummer	5.15	Maple Creek	0.40
Jims	0.76	Soldier	3.22

Butter	2.51	Canyon	31.06
Pelletreau	1.30	Big East Fork, Canyon	0.20
Kerlin	2.40	Clear Gulch, Canyon	0.80
Mill	1.61	Eagle Creek	0.23
Eltapom	1.30	Sailor Bar	0.40
Ammon	0.94	Big Bar	5.63
Madden	1.90	Price	4.83
Grouse	12.20	Manzanita	10.46
Mosquito	7.80	Prairie	2.60
Coon	2.00	Little French	3.70
		Big French	11.59
Hayfork Basin		E.F. Big French	3.20
Haytork	86.10	Swede	3.10
Dubakella	3.14	Don Juan	0.87
Goods	1.60	Byron EFNF	1.21
Hall City	3.22	East Fork North Fork	21.73
VVIISON	1.01	Grizzly	10.62
East Fork Haylork	9.37	Middle Fork of	7.20
Folato	4.15	Rattlesnake	0.04
Bridge Gulch	1 93	Whites	2 50
Carr	8 72	Backbone	2.30
West Fork Carr	0.40	East Branch	3 50
Summit	5.20	Yellow Jacket E.F	0.14
Duncan	4.02	Indian	18.60
Barker	5.91	Brock Gulch E.F.	5.95
Little Barker	3.73	Corral	1.50
Big	13.68	Cannon Ball	1.40
Packers	3.86	Mule	1.30
Donaldson	2.01	South Fork Indian	1.61
Kingsbury Gulch	7.50		
Salt	14.08		
Muldoon Gulch	0.74		
West Fork Salt Creek	0.40		
Bapthar Culab	1.53		
Pantner Guich	1.53		
Deer Gulch	0.90		
Ditch Gulch	1.09		
Dobbins Gulch	1.45		
Philpot	2.25		
North Philpot	1.61		
 Tule	14 68		
Wost Tulo	2.90		
	2.90		
East Tule	0.40		
Little	2.10		
Rusch	6.40		
Bear	3.86		
Miners	5.95		
West Fork Miners	0.97		
Olsen	2 10		
West Fark Dear	2.10		
West Fork Bear	0.40		

Cable SF	0.23	
Cave SF	1.35	
Grassy Flat	0.61	
Packers	3.70	
Sheil gulch	0.84	