Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest)

COHO SALMON
Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest)

COHO SALMON

by

Jeffrey C. Laufle, Gilbert B. Pauley, and Michael F. Shepard
Washington Cooperative Fishery Research Unit
College of Ocean and Fishery Sciences
University of Washington
Seattle, WA 98195

Project Officer
John Parsons
National Coastal Ecosystems Team
U.S. Fish and Wildlife Service
1010 Gause Boulevard
Slidell, LA 70458

Performed for
Coastal Ecology Group
Waterways Experiment Station
U.S. Army Corps of Engineers
Vicksburg, MS 39180

and

National Coastal Ecosystems Team
Division of Biological Services
Research and Development
Fish and Wildlife Service
U.S. Department of the Interior
Washington, DC 20240
This series should be referenced as follows:

PREFACE

This species profile is one of a series on coastal aquatic organisms, principally fish, of sport, commercial, or ecological importance. The profiles are designed to provide coastal managers, engineers, and biologists with a brief comprehensive sketch of the biological characteristics and environmental requirements of the species and to describe how populations of the species may be expected to react to environmental changes caused by coastal development. Each profile has sections on taxonomy, life history, ecological role, environmental requirements, and economic importance, if applicable. A three-ring binder is used for this series so that new profiles can be added as they are prepared. This project is jointly planned and financed by the U.S. Army Corps of Engineers and the U.S. Fish and Wildlife Service.

Suggestions or questions regarding this report should be directed to one of the following addresses.

Information Transfer Specialist
National Coastal Ecosystems Team
U.S. Fish and Wildlife Service
NASA-Slide11 Computer Complex
1010 Gause Boulevard
Slidell, LA 70458

or

U.S. Army Engineer Waterways Experiment Station
Attention: WESER-C
Post Office Box 631
Vicksburg, MS 39180
CONVERSION TABLE

<table>
<thead>
<tr>
<th>Metric to U.S. Customary</th>
<th>Multiply By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>millimeters (mm)</td>
<td>0.03937</td>
<td>inches</td>
</tr>
<tr>
<td>centimeters (cm)</td>
<td>0.3937</td>
<td>inches</td>
</tr>
<tr>
<td>meters (m)</td>
<td>3.281</td>
<td>feet</td>
</tr>
<tr>
<td>kilometers (km)</td>
<td>0.6214</td>
<td>miles</td>
</tr>
<tr>
<td>square meters (m²)</td>
<td>0.03937</td>
<td>square feet</td>
</tr>
<tr>
<td>square kilometers (km²)</td>
<td>0.3937</td>
<td>square miles</td>
</tr>
<tr>
<td>hectares (ha)</td>
<td>2.471</td>
<td>acres</td>
</tr>
<tr>
<td>liters (L)</td>
<td>0.2642</td>
<td>gallons</td>
</tr>
<tr>
<td>cubic meters (m³)</td>
<td>35.31</td>
<td>cubic feet</td>
</tr>
<tr>
<td>cubic meters</td>
<td>0.0008110</td>
<td>acre-feet</td>
</tr>
<tr>
<td>milligrams (mg)</td>
<td>0.00003527</td>
<td>ounces</td>
</tr>
<tr>
<td>grams (g)</td>
<td>0.03527</td>
<td>ounces</td>
</tr>
<tr>
<td>kilograms (kg)</td>
<td>2.205</td>
<td>pounds</td>
</tr>
<tr>
<td>metric tons (t)</td>
<td>2205.0</td>
<td>pounds</td>
</tr>
<tr>
<td>metric tons</td>
<td>1.102</td>
<td>short tons</td>
</tr>
<tr>
<td>kilocalories (kcal)</td>
<td>3.968</td>
<td>British thermal units</td>
</tr>
<tr>
<td>Celsius degrees</td>
<td>1.8(°C) + 32</td>
<td>Fahrenheit degrees</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U.S. Customary to Metric</th>
<th>Multiply By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>inches</td>
<td>25.40</td>
<td>millimeters</td>
</tr>
<tr>
<td>inches</td>
<td>2.54</td>
<td>centimeters</td>
</tr>
<tr>
<td>feet (ft)</td>
<td>0.3048</td>
<td>meters</td>
</tr>
<tr>
<td>fathoms</td>
<td>1.829</td>
<td>meters</td>
</tr>
<tr>
<td>miles (mi)</td>
<td>1.609</td>
<td>kilometers</td>
</tr>
<tr>
<td>nautical miles (mi)</td>
<td>1.852</td>
<td>kilometers</td>
</tr>
<tr>
<td>square feet (ft²)</td>
<td>0.0929</td>
<td>square meters</td>
</tr>
<tr>
<td>acres</td>
<td>0.4047</td>
<td>hectares</td>
</tr>
<tr>
<td>square miles (mi²)</td>
<td>2.590</td>
<td>square kilometers</td>
</tr>
<tr>
<td>gallons (gal)</td>
<td>3.785</td>
<td>liters</td>
</tr>
<tr>
<td>cubic feet (ft³)</td>
<td>0.02831</td>
<td>cubic meters</td>
</tr>
<tr>
<td>acre-feet</td>
<td>1233.0</td>
<td>cubic meters</td>
</tr>
<tr>
<td>ounces (oz)</td>
<td>28.35</td>
<td>grams</td>
</tr>
<tr>
<td>pounds (lb)</td>
<td>0.4536</td>
<td>kilograms</td>
</tr>
<tr>
<td>short tons (ton)</td>
<td>0.9072</td>
<td>metric tons</td>
</tr>
<tr>
<td>British thermal units (Btu)</td>
<td>0.2520</td>
<td>kilocalories</td>
</tr>
<tr>
<td>Fahrenheit degrees</td>
<td>0.5556(°F - 32)</td>
<td>Celsius degrees</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

We gratefully acknowledge the reviews by Sam Wight, Washington Department of Game, Olympia, and Gary Thomas, School of Fisheries, University of Washington, Seattle.
COHO SALMON

NOMENCLATURE/ TAXONOMY/ RANGE

Scientific name ... Oncorhynchus kisutch (Walbaum)

Preferred common name ... Coho salmon (Figure 1)

Other common names ... Silver salmon, silver trout (in freshwater), coho, sea trout, blueback, hooknose (Haw and Buckley 1973; Scott and Crossman 1973)

Class ... Osteichthyes

Order ... Salmoniformes

Family ... Salmonidae

Geographic range: Anadromous in north Pacific Ocean, and coastal area from Monterey, California, north to Point Hope, Alaska, through the Aleutians, and from the Anadyr River, U.S.S.R., south to Korea and Hokkaido, Japan. Most abundant between southern Oregon and southeast Alaska. Coho have been planted successfully in lakes and reservoirs in Alaska, Washington, Oregon, California and in some cases in Montana for many years. The first successful stocking in the Great Lakes was in 1966, with a continued sport fishery since then. Other plantings include Atlantic States from Maine to Maryland (moderate success) plus Argentina and Chile (some success in Chile) and Alberta, Canada (apparently successful: Scott and Crossman 1973). Major spawning rivers and areas of concentration for the Pacific Northwest United States are shown in Figure 2, and
Figure 2. Major Pacific Northwest spawning rivers of coho salmon. Coho are found in all marine waters of the area (Scott and Crossman 1973).
saltwater migration patterns of adult coho salmon as determined from tagged and marked hatchery smolts are shown in Figure 3. Juveniles can migrate to southeast Alaska and farther in the first few months at sea.

MORPHOLOGY/IDENTIFICATION

Dorsal fin 9-12 rays; adipose present; anal fin 12-17 rays; pectoral fin 13-16 rays; ventral fin 9-11 rays with axillary process; lateral line scales 121-148; pyloric caeca 45-83; vertebrae 61-69; gill rakers 18-26 on first gill arch; branchiostegal rays 11-15. Measurements as percent: body depth 24 (in standard length); head length 22 (in total length); head longer in spawning males (Hart 1973).

Body fusiform, somewhat compressed laterally; fork length usually 46 to 61 cm, maximum 98 cm and 3.6 to 4.5 kg, with a maximum of 14 kg in marine populations (Scott and Crossman 1973).

Pigmentation: Juveniles colored blue-green dorsally, with silvery sides, and 8 to 12 widely spaced, narrow parr marks; lateral line through center of marks; dark adipose fin; orange caudal fin; and large orange anal fin with three long anterior rays and black posteriorly. Ocean-dwelling adults steel-blue to greenish dorsally; silvery sides, and white ventral surface; small black spots on back, upper sides, dorsal fin base, and upper lobe of caudal fin. Before spawning, males acquire darker, dusky blue-green back, with bright red stripe on dorsal sides, grey to black ventral surface.

Pale gums in marine adult coho distinguish it from chinook salmon (Oncorhynchus tshawytscha), which have black gums. Spotsting confined to upper lobe of caudal fin (spotsing on both lobes in chinook), and number of pyloric caeca less than 83 in coho and greater than 140 in chinook, according to Dahlberg and Phinney (1967). Juvenile coho have pigmentation over entire adipose fin, while juvenile chinook have an unpigmented adipose (Dahlberg and Phinney 1967).

REASON FOR INCLUSION IN SERIES

Coho salmon constitute a valuable part of the commercial and sport fisheries of the west coast freshwater and marine environments. They are the object of extensive hatchery rearing and release programs. They are tertiary carnivores, and are themselves preyed upon.

LIFE HISTORY

Spawning and Eggs

Coho are anadromous, entering freshwater to spawn (Godfrey 1965). Beginning in July, but later than August in some areas such as Grays Harbor, they return from the open ocean to coastal areas near the outlets of their natal streams. They enter rivers on all but peak floods, moving upstream primarily in daylight. Runs take place from August to February. Eames and Hno (1981) reported a November peak in a Washington stream.

Coho salmon spend 30 to 60 days in freshwater, and in North America, peak spawning occurs from late September to January, and continues as late as March. The fish usually spawn in small streams, but also use large main streams, though seldom more than 240 km above the mouth. They spawn in relatively fast water (0.3 to 0.5 m/sec vs. 0.1 m/sec for sockeye), normally in riffles or where ground seepage occurs. Although numbers of males and females in a spawning run are similar, males may predominate early in the run and females later. More males are present overall due to jacks (sexually precocious males that return early), while females predominate...
Figure 3. Oceanic migration patterns of adult coho salmon on the west coast of British Columbia, Washington, Oregon and northern California, as determined from tagged and marked hatchery smolts (Wight 1968).
slightly in the older adults. More than one male often competes for a spawning female. Spawning takes place at temperatures of 0.8°C to 7.7°C in Kamchatka, U.S.S.R. (Gribanov 1948) and at 4.4°C to 9.4°C on the west coast of the United States (Reiser and Bjornn 1979).

Fecundity of coho salmon is variable depending on the size of the female, geographic area, and year. Scott and Crossman (1973) cited a range of about 1,440 to 5,700 eggs for females 44 to 72 cm long in Washington, and an average of 2,100 to 2,789 eggs per female (no lengths given) in British Columbia. Estimates in Kamchatka put coho salmon second to chinook salmon in fecundity, but no lengths were given. Shapovalov and Taft (1954) developed the following fecundity formula:

\[
\text{number of eggs} = 0.0115 \times \text{fork length}^{940.3}
\]

The female may deposit eggs in three or four redds (nests), which she digs by lying on her side and beating out the gravel with her tail. A dominant male moves in and joins the female; the spawning act consists of vibration by both fish, with gaping mouths, and the release of eggs and milt. The eggs are covered with gravel displaced from the upstream side of the nest. Eggs are demersal, large (about 4.5 to 6.0 mm), and red. The female guards the nest for a short time, but both parents die soon after spawning (Scott and Crossman 1973). Incubation time apparently varies inversely with temperature, as shown by the following observations:

- 38 days at 11°C average
- 48 days at 9°C average
- 86-101 days at 4.5°C.

Larvae, Fry, and Smolts.

Newly hatched larvae possess a large yolk sac, which they absorb while remaining in the gravel for 2 to 3 weeks following hatching. They are at first photonegative, but become photopositive, and face upcurrent as well. Newly emerged fry have been observed from March to July. The fry live in shallow gravel areas, at first schooling; after a short time disperse up- and downstream. Optimum rearing habitat for coho consists of a mixture of pools and riffles, abundant instream and bank cover, water temperatures that average between 10°C and 15°C in the summer, dissolved oxygen near saturation, and low amounts of fine sediments (Reiser and Bjornn 1979).

Small numbers of coho salmon may migrate to sea, but at least a year's residence in freshwater is normal. However, there is a gradation from 1 year in freshwater in Washington up to 2 years in freshwater in central British Columbia, with more northerly fish usually spending 2 years in freshwater. For example, fish in the Yukon River drainage spend 2 years in freshwater (Scott and Crossman 1973). As they grow, the fry move to deeper water, feeding on progressively larger foods. In winter they feed and grow little. The juveniles usually migrate downstream from April to August of the year following their hatching, with peak migrations in May in nearly all areas. Nighttime migration appears to be the rule (McDonald 1960).

Size and age of the fish, as well as stream conditions, trigger outmigration. The radical physiological and behavioral changes that occur during smoltification make salmon in this stage particularly sensitive to environmental stress factors. For example, elevated water temperatures can accelerate the onset of smoltification and shorten the smolting period, sometimes resulting in seaward migration of smolts at a time when conditions are unfavorable (Vedenev et al. 1980). Larger juveniles are believed to be the first to go downstream, but aggression by larger fry may induce early downstream movement by smaller ones soon after
emergence (Chapman 1962; Mason and Chapman 1965).

Ocean Life

Early studies indicated that coho salmon did not migrate far offshore, but more recent high-seas research has shown differently. They have been captured as far as 1,930 km away from their point of origin on the North American west coast. Movement of these fish is not random, since marked adult fish from the Columbia River are rare in Alaska salmon catches. The North American west coast oceanic migration patterns of adult coho salmon, as determined from tagged and marked hatchery fish, are depicted in Figure 3. Offshore migrations by juveniles commence in July and August, as evidenced by sharp declines in inshore catches of juveniles at that time. There are two migration types of coho salmon in Washington and British Columbia: "ocean," or high-seas dwellers, migrate great distances, while "inshore" fish such as those living as residents in the Strait of Georgia or Puget Sound migrate very little and stay near their river of origin. Four types of life histories occur in the Puget Sound-Georgia Strait area: (1) ocean migrants that go to sea in the spring of the second year; (2) resident fish that go to the ocean in the fall of the second year after spending the summer in inside marine waters; (3) resident fish that go to the ocean in the spring of their third year after 1 year in inside marine waters; and (4) true residents that spend their entire lives in the inside marine waters. Each of these groups is progressively smaller in average size, due to less time in the open ocean. High-seas fish of North American origin probably winter south of 45° N. lat., and move north in mid- to late summer, later than do other salmon.

Coho salmon apparently concentrate in the Gulf of Alaska in the summer, dispersing coastward from there. Mine (1950) indicated that migrations are mostly direct rather than alongshore. Fish reportedly move slowly, wandering as they migrate, although they have averaged up to 30 mi per day over long distances. The delays are attributed to intensive feeding until late in their journey.

Most coho salmon, including juveniles and adults, are found within 10 m of the sea surface except when covered by a shallow layer of warmer "tuna" water. This zone is where the sport fishery concentrates its efforts (Haw and Buckley 1973).

As a rule, adult coho salmon spend two growing seasons at sea, appearing offshore near the outlets of their rivers of origin in the second summer after they enter saltwater. In southeast Alaska and northern British Columbia, they arrive in large numbers in July, and in southern British Columbia, Washington, and Oregon their arrival is later, with a general timing gradation that is progressively later the more southerly the run. They home almost entirely to the streams of their origins, and the small percentages that do stray migrate primarily to nearby streams.

Survival

Various studies (Salo and Bayliff 1958; Tagart 1976) were used by the Washington Department of Fisheries (in press) to derive a composite life sequence to predict average smolt production per female coho salmon. From this, an average production of 75 smolts/female was estimated. This is applicable only to the 3-year-old fish that spend 2 years at sea in the southern part of their range, south of central British Columbia.

GROWTH CHARACTERISTICS

Most coho salmon reside in the ocean for two growing seasons, return-
ing at the end of the second summer. These are designated age 3, or
upon return for spawning (integer is total age and the subscript is year of
life at outmigration). Those that spend 1 year in freshwater would be 3,
while those that spend 2 years in freshwater before outmigrating would
be age 4,. The precocious males ("jacks") or females ("jills" or
"jennies") that return to spawn after only one summer are designated as 2.

California coho salmon averaged 16 cm at outmigration, and grew an
average of about 52 cm while at sea (Shapovalov and Taft 1954). Kamchat-
kan coho salmon were similar, with ocean growth much faster than fresh-
water growth for both 3, and 43 fish (Gribanov 1948). The Kamchatkan returnees averaged 60 cm FL (range 40-
87 cm), and 3.5 kg (range 1.5 - 6.5 kg). Males were larger than females. The California returnees' sex, age,
and average fork length were as follows: 2, males, 46 cm FL; 3,
males, 64.7 cm; 3, females, 63.9 cm. Males were typically larger than females.

THE FISHERY

Coho salmon are a highly valued species, the object of large commer-
cial (Table 1) and sport (Table 2) fisheries. Additional data demon-
strate the value of coho salmon in U.S. commercial fisheries: in 1980, 39.3 million pounds, worth $43.1
million, were landed; in 1981, 35.2
million pounds were landed, at $33.3
million (U.S. Department of Commerce 1982). Most commercial landings are close to shore (29.7 million pounds
from 0 to 4.8 km out, versus 5.5 mil-
ion pounds from 4.8 to 322.0 km out,
in 1981). Coho ranked consistently
fourth behind sockeye salmon (Onco
rhynchos nerka), oink salmon (O.
gorbuscha), and chum salmon (O. keta),
in the Pacific coast commercial fish-
ery from 1968 to 1978, and made up 8%
to 11% of the total catch (Inter-
national North Pacific Fisheries Commis-
sion 1971-81). The Lake Michigan coho
salmon sport fishery is outproducing
the entire U.S. Pacific Coast coho
salmon sport fishery (Tanner 1974).

Coho salmon are fished commer-
cially with gill nets, set nets (treaty Indians only, in Washington),
purse seine, and trolling gear (Washington Department of Fisheries et al. 1973). Sport fishing is by hook
and line in saltwater and in streams. Saltwater angling is both off-coast
and inshore, with Puget Sound, for example, supporting a substantial
fishery in late summer for ocean and resident fish. Haw and Buckley (1973)
discussed sport fishing techniques in detail. Salo (1974) estimates that
anglers spent between $100 and $125 in
1966 to catch a coho salmon.

Many coho salmon are reared and
released from State, Federal, and
other hatcheries; about 40% to 50% of
the net-caught salmon in Puget Sound
are estimated to be of hatchery ori-
gin. Coho salmon and chinook salmon
are the most successfully reared sal-
monid species. Hatcheries have become
important because of such develop-
ments as pellet-sized food, better disease
treatment, and the rearing of fish to
the yearling stage (Fulton 1970). Co-
lumbia River runs have been enhanced
by hatcheries since 1959.

Current management objectives of the Washington Department of Fisheries are toward maximum sustained harvest,
with the treaty Indian Tribes under the Boldt Decision (United States vs.
State of Washington) having a legal
right to 50% of the catchable alloca-
tion. Preseason run sizes for each
individual river are estimated and
escapement goals for each river are
predicted (Zillges 1977; an escapement
goal is the number of spawners
necessary to maintain the run of a
given size, and a goal may vary from
year to year. In-season run
reassessments are also made (Zillges
1977). From these predictions and
projections each year, the catchable
Table 1. Annual commercial landings of coho salmon by State or Province in metric tons (MT) and number of fish (in thousands) for the years 1968-78. Data from International North Pacific Fisheries Commission (1971-81).

<table>
<thead>
<tr>
<th>Year</th>
<th>British Columbia MT</th>
<th>Fish</th>
<th>Alaska MT</th>
<th>Fish</th>
<th>Washington MT</th>
<th>Fish</th>
<th>Oregon MT</th>
<th>Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968</td>
<td>15,100</td>
<td>5,257</td>
<td>9,530</td>
<td>1,133</td>
<td>3,950</td>
<td>1,275</td>
<td>2,620</td>
<td>929</td>
</tr>
<tr>
<td>1969</td>
<td>7,990</td>
<td>2,414</td>
<td>3,660</td>
<td>1,133</td>
<td>3,220</td>
<td>920</td>
<td>2,240</td>
<td>802</td>
</tr>
<tr>
<td>1970</td>
<td>13,649</td>
<td>3,946</td>
<td>5,407</td>
<td>1,527</td>
<td>7,885</td>
<td>1,870</td>
<td>5,935</td>
<td>1,401</td>
</tr>
<tr>
<td>1971</td>
<td>14,089</td>
<td>4,788</td>
<td>5,208</td>
<td>1,447</td>
<td>6,100</td>
<td>2,002</td>
<td>5,341</td>
<td>1,695</td>
</tr>
<tr>
<td>1972</td>
<td>10,536</td>
<td>3,359</td>
<td>6,415</td>
<td>1,831</td>
<td>4,471</td>
<td>1,253</td>
<td>2,941</td>
<td>925</td>
</tr>
<tr>
<td>1973</td>
<td>11,227</td>
<td>3,531</td>
<td>4,948</td>
<td>1,457</td>
<td>5,854</td>
<td>1,672</td>
<td>3,314</td>
<td>937</td>
</tr>
<tr>
<td>1974</td>
<td>10,379</td>
<td>3,724</td>
<td>6,394</td>
<td>1,862</td>
<td>6,923</td>
<td>2,117</td>
<td>4,562</td>
<td>1,328</td>
</tr>
<tr>
<td>1975</td>
<td>7,736</td>
<td>2,332</td>
<td>3,233</td>
<td>1,014</td>
<td>6,389</td>
<td>1,837</td>
<td>2,641</td>
<td>772</td>
</tr>
<tr>
<td>1976</td>
<td>9,325</td>
<td>3,698</td>
<td>5,063</td>
<td>1,432</td>
<td>5,530</td>
<td>2,162</td>
<td>5,096</td>
<td>1,936</td>
</tr>
<tr>
<td>1977</td>
<td>9,856</td>
<td>3,341</td>
<td>6,987</td>
<td>1,815</td>
<td>5,536</td>
<td>1,745</td>
<td>1,493</td>
<td>478</td>
</tr>
<tr>
<td>1978</td>
<td>19,152</td>
<td>3,350</td>
<td>9,062</td>
<td>2,821</td>
<td>4,222</td>
<td>1,480</td>
<td>1,870</td>
<td>730</td>
</tr>
</tbody>
</table>

Table 2. Estimated numbers of coho salmon caught in the recreational fisheries of four States during 1970-78. Asterisk (*) indicates marine catches only. Data from International North Pacific Fisheries Commission (1971-81).

<table>
<thead>
<tr>
<th>Year</th>
<th>Alaska</th>
<th>Washington</th>
<th>Oregon</th>
<th>California</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>32,075</td>
<td>540,231*</td>
<td>279,602</td>
<td>14,615*</td>
</tr>
<tr>
<td>1971</td>
<td>50,500</td>
<td>845,735*</td>
<td>335,003</td>
<td>67,421*</td>
</tr>
<tr>
<td>1972</td>
<td>37,510</td>
<td>615,895*</td>
<td>135,078</td>
<td>43,770*</td>
</tr>
<tr>
<td>1973</td>
<td>42,575</td>
<td>552,255</td>
<td>254,610</td>
<td>31,641*</td>
</tr>
<tr>
<td>1974</td>
<td>50,550</td>
<td>788,981</td>
<td>339,126</td>
<td>78,162*</td>
</tr>
<tr>
<td>1975</td>
<td>70,300</td>
<td>701,721</td>
<td>273,892</td>
<td>20,860*</td>
</tr>
<tr>
<td>1976</td>
<td>59,100</td>
<td>1,195,579</td>
<td>127,490</td>
<td>57,642*</td>
</tr>
<tr>
<td>1977</td>
<td>104,090</td>
<td>683,108</td>
<td>212,371</td>
<td>26,788*</td>
</tr>
<tr>
<td>1978</td>
<td>131,945</td>
<td>713,219</td>
<td>268,980</td>
<td>44,282*</td>
</tr>
</tbody>
</table>
allocation of coho salmon in each individual river is made with non-Indians receiving 50% and treaty Indians receiving 50%. The non-Indian share is then divided between commercial fishermen and sport anglers.

Management methods for coho and other salmon must include freshwater habitat assessment, stock assessment including run size, habitat protection and improvement, and artificial propagation. The Washington Department of Fisheries has been using Smoker's (1953) preseason method in Puget Sound to predict coho salmon catches from stream discharge data, as well as the previous year's jack run size. Such factors, however, as environmental extremes, saltwater environmental variations, and fishing intensity also play a role (Zillges 1977). Other methods are being developed and used in other areas by cooperative effort between State biologists and tribal biologists.

Wright (1951) described the complexities of salmon management, stating that good run forecasts with accurate and timely reassessments are important. Also, runs dependent upon hatcheries could be harvested at a higher rate than wild runs because of high survival of juveniles in hatcheries. Where two stocks coexist geographically, maximum sustainable yield should be defined for the weaker stock, with the surplus fish taken where the stronger stock is easier to target. He argued against depending on user groups, i.e., fishermen, for sound management; the vitality of the resource should be the primary criterion used in designing management procedures.

ECOLOGICAL ROLE

Coho salmon fill different niches in freshwater and in saltwater. The alevins living in gravel do not feed, but depend on the yolk sac for nourishment. Even though part of the yolk sac may remain after emergence, the fry begin to feed immediately after emergence (Godfrey 1965). Johnson (1970) stated that juvenile salmon in Washington, depending on the season and stream, ate various life stages of aquatic insects (mostly at the surface), such as dipterans, ephemeropterans, plecopterans and other insects, as well as crustaceans and fishes. If their normal food is scarce, juvenile coho will eat insect exuviae, though this provides no nutrition (Mundie 1969). Alaskan coho fingerlings prey on sockeye salmon fry (Oncorhynchus nerka); 30% of coho captured between May and July had sockeye remains in their stomachs (Roos 1960). They ate the sockeye even though sticklebacks were more abundant.

Fresh et al. (1981) categorized the food of coho salmon by zones in Puget Sound and other Washington marine waters. Juvenile fish from sublittoral habitats had stomach contents consisting mainly of decapod crustacean larvae. plus fishes (mostly herring), amphipods, and polychaetes. In the nearshore pelagic zone, some juveniles examined had brachyuran crab larvae as their primary food item. Young coho from the offshore pelagic zone ate euphausids, fishes (mainly herring), gammarids, and decapod larvae. Fishes formed the highest biomass, but occurred in only 30% of the coho salmon stomachs. Offshore in the Pacific, near the Columbia River, young adult coho examined were larger than those in Puget Sound and ate mostly fishes, including anchovy, surf smelt, whitebait smelt, herring, juvenile chinook, and juvenile rockfish. They also fed on euphausiids and crab larvae off Oregon and Washington (Silliman 1941; Heg and Van Hynning 1951). In the Great Lakes, coho and other salmon have confirmed hopes that they would consume the smelt and alewifies present there in abundance (Scott and Crossman 1973).
Coho salmon themselves are the prey of a variety of animals. Coho juveniles are taken by other fishes, including other coho salmon, trout, squawfish, and sculpins (Scott and Crossman 1973). Birds that prey upon coho include mergansers, kingfishers, and loons. Spawning adults are eaten by animals such as bears and eagles. Seals and killer whales prey on ocean-dwelling salmon, while man and parasitic lampreys prey on coho in marine and freshwater environments.

The predation by adult coho on juvenile sockeye salmon, chinook salmon and coho salmon is indicative of their aggressiveness. Scott and Crossman (1973) stated that coho salmon also eat chum and pink salmon fry. Mason and Chapman (1965) indicated that coho fry are aggressive and territorial soon after emergence, and establish intraspecific dominance hierarchies. Where coho and chinook fry occurred together in streams, the coho were socially dominant, defending territory accessible to incoming food (Stein et al. 1972). Coho were the faster growing of the two, and were heavier than chinook fry of the same length.

Production of juvenile coho salmon in three Oregon streams averaged 9 g/m²/yr over 4 years (Chapman 1965). Measurements were made over 14 months of stream residence time. Monthly averages were 1.9 to 2.8 g/m² following emergence, dropping to 0.2-0.3 g/m² by winter. Pearson et al. (1970) found that coho production per unit area was higher in pools with large riffles upstream than in pools downstream of small riffles, because of a greater available food supply.

Dill (1969) stated that fry expand their territories at 1.5 to 2 months. The reduction in density may be a result of predation, which Godfrey (1965) postulated may be a major factor in an observed decline in numbers following the peak of emergence.

Environmental Requirements

Reiser and Bjornn (1979) reviewed the habitat needs of coho in streams which are summarized in Table 3. McMahon (1883) has constructed a Habitat Suitability Index pertaining to riverine habitat for various life stages of coho salmon.

Temperature

Preferred temperatures for coho salmon in streams range between 11.8° and 14.6°C (Bell 1973), and 25.8°C is the upper lethal limit. As stated earlier, incubation time varies with temperature. The shortest time given by Godfrey (1965) was 38 days at 11°C, and the longest was 86 to 101 days with a temperature of 4.5°C. Godfrey (1965) listed 4.0°C to 15.2°C as the oceanic temperature range where coho salmon have been taken, with the best catches occurring between 8° and 12°C. Streamside vegetation plays an important role in regulating the stream temperatures.

Water Depth

Adult coho salmon can spawn in shallow water (0.18 m), but young fish apparently prefer deeper water (0.3-1.2 m), where most of the available riffle area is submerged (Table 3).

Water Velocity

Adults can swim in water velocities as high as 2.44 m/sec, with even faster bursts of speed, while adult spawning and juvenile rearing must take place in water velocity of well under 1 m/sec (Table 3). Water velocities preferred by invertebrate food items are in the range of 0.15 to 1.22 m/sec.

Oxygen

Coho salmon, especially embryos and juveniles, prefer highly oxygenat-
Table 3. Summary of preferred habitat requirements for coho salmon in streams (from Reiser and Bjornn 1979).

<table>
<thead>
<tr>
<th>Habitat requirements</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Adult migration upstream</td>
<td>7.2° - 15.6°C</td>
</tr>
<tr>
<td>Spawning</td>
<td>4.4° - 9.4°C</td>
</tr>
<tr>
<td>Incubation</td>
<td>4.4° - 13.3°C</td>
</tr>
<tr>
<td>Upper lethal</td>
<td>25.8°C</td>
</tr>
<tr>
<td>Preferred range</td>
<td>11.8° - 14.6°C</td>
</tr>
<tr>
<td>Water depth</td>
<td></td>
</tr>
<tr>
<td>Adult migration upstream (minimum)</td>
<td>0.18 m</td>
</tr>
<tr>
<td>Spawning (minimum)</td>
<td>0.18 m</td>
</tr>
<tr>
<td>Age 0 fish (preferred) (60% of riffle should be submerged)</td>
<td>0.30 - 1.22 m</td>
</tr>
<tr>
<td>Water velocity</td>
<td></td>
</tr>
<tr>
<td>Adult migration upstream (maximum)</td>
<td>2.44 m/sec</td>
</tr>
<tr>
<td>Spawning</td>
<td>0.31 m/sec</td>
</tr>
<tr>
<td>Age 0 fish (preferred)</td>
<td>0.09 < 0.30 m/sec</td>
</tr>
<tr>
<td>Riffle velocity for rearing</td>
<td>0.31 - 0.46 m/sec</td>
</tr>
<tr>
<td>Pool velocity for rearing</td>
<td>0.09 - 0.24 m/sec</td>
</tr>
<tr>
<td>Adult swimming speeds: cruising sustained darting</td>
<td>1.04 - 3.23 m/sec</td>
</tr>
<tr>
<td>3.23 - 6.55 m/sec</td>
<td></td>
</tr>
<tr>
<td>Invertebrate food organisms</td>
<td>0.15 - 1.22 m/sec</td>
</tr>
<tr>
<td>O₂</td>
<td></td>
</tr>
<tr>
<td>Weight gain in fry stage</td>
<td>4 - 9 mg/l for 70% - 100% gain over 19 - 28 days</td>
</tr>
<tr>
<td>Food conversion (9 mg/l maximum tested)</td>
<td>4 - 9 mg/l</td>
</tr>
<tr>
<td>Juvenile swimming speed (maximum)</td>
<td>100% saturation</td>
</tr>
<tr>
<td>Incubation</td>
<td>Near saturation (>5 mg/l)</td>
</tr>
<tr>
<td>Space (area)</td>
<td></td>
</tr>
<tr>
<td>Average size of redd</td>
<td>2.8 m²</td>
</tr>
<tr>
<td>Recommended area per spawning pair</td>
<td>11.7 m²</td>
</tr>
<tr>
<td>Year 1+ fish</td>
<td>2.4 - 5.5 m² fish</td>
</tr>
<tr>
<td>Substrate</td>
<td></td>
</tr>
<tr>
<td>Spawning</td>
<td>20% fine sediment</td>
</tr>
<tr>
<td>< 6.4 mm in riffle substrate</td>
<td></td>
</tr>
<tr>
<td>Silt loads</td>
<td></td>
</tr>
<tr>
<td>< 25 mg/l preferable</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Good overhead and submerged cover</td>
<td></td>
</tr>
<tr>
<td>Riffle/pool ratio of 1:1</td>
<td></td>
</tr>
</tbody>
</table>
ed water. Growth and food conversion decline at levels below about 4 mg/l. Swimming ability of juveniles also can drop in unsaturated water. Reduced oxygen levels inhibited growth and lengthened incubation time for coho embryos (Shumway et al. 1964). Low oxygen concentrations reduced survival of coho embryos (Phillips and Campbell 1961).

Space

Spatial requirements for spawning and rearing are known (Reiser and Bjornn 1979). Space requirements for juveniles increase as they grow and are probably food related (Chapman 1966), though Chapman (1962) stated that food was not involved in the intraspecific aggressiveness he found in coho fry. Pearson et al. (1970) did find greater production in pools, a situation that would seem to mitigate density-dependent factors involved in aggression.

Other Factors

A substrate (gravel) size range of 1.3 to 10.2 cm necessary for spawning was cited by Reiser and Bjornn (1979). Dil (1969) found that coho salmon survival at emergence was greater in large gravel than in small, but their condition was poorer; he attributed the survival to greater ease of water penetration and the poorer condition to less support for the alevins.

Low siltation is important for survival of eggs and juveniles. Reiser and Bjornn (1979) listed silt loads of less than 25 mg/l as best. High water velocities reduce deposition of fine sediment, which should make up less than 40% of the riffle substrate. Large amounts of deposited silt restrict oxygen flow to eggs and fry, and trap fry attempting to leave the gravel (Lantz 1976). Sigler et al. (1984) reported that chronic turbidity affected the emergence and rearing of young coho salmon; a lower growth rate was observed in fish subjected to continuous clay turbidities compared to fish grown in clear water. Stober et al. (1981) studied the reactions of coho and chinook salmon to Mt. St. Helens, Washington, volcanic ash and mudflow sediment in two rivers. In field livebox experiments they obtained 96-h LC50's at 1,217 and 509 mg/l of suspended mud and ash for coho presmolts and smolts, respectively. A comparative static bioassay with ash produced 96-h LC50's at 18,672 and 28,184 mg/l for presmolts and smolts, respectively. A static 96-h bioassay using mudflow sediments produced mortality in smolts at 29,580 mg/l. Complete presmolts mortality occurred in the Cowlitz River in the summer following the 18 May 1980 eruption (Stober et al. 1981). As pointed out by Reiser and Bjornn (1979), high levels of suspended sediments can clog and abrade gills, curtail feeding, and cause avoidance of areas by fish. Sediment also may destroy food supplies (Cordone and Kelley 1961).

Salmon abundance has been linked to available cover in a stream (Reiser and Bjornn 1979). Overhead cover provides shade and protection from terrestrial predators, while submerged cover provides shelter from current and predators.

A list of examples of habitat alterations and how they adversely affect Salmonid populations was reported by the Washington Department of Fisheries et al. (1973). Logging, for instance, causes sedimentation, elevated water temperatures from lack of adequate cover, stream damming, decomposition of organics and high biological oxygen demand (BOD), and possible severe erosion and rapid runoff (especially in clearcuts). Hall and Lantz (1969) cited daily stream temperature fluctuations caused by logging operations as serious threats to coho salmon. The Washington Department of
Fisheries et al. (1973) additionally listed irrigation (removing water, adding pollutants, entraining juveniles), damming (migration delay or prevention, spawning habitat destruction from reservoir coverage, turbine-and spillway-related mortalities, possible increased predation in reservoirs), industrial projects (water consumption, pollution), channelization (pool and riffle elimination, siltation), and residential development (flooding and erosion), as detrimental to Salmonid habitat. Detailed summaries on several human-made structures and activities that negatively impact Salmonid habitat have been published: paper mills (Schmiege 1980), forest roads (Yee and Roelofs 1980), mining (Martin and Platts 1981), livestock grazing (Platts 1981), logging (Chamberlin 1982), and silviculture (Everest and Harr 1982).

Shapovalov, L., and A.C. Taft. 1954. The life histories of the steelhead rainbow trout (Salmo gairdneri) and silver salmon (Oncorhynchus Oreg. sutch) with special reference to Waddell Creek, California, and recommendation regarding their management. Calif. Dep. Fish. Game Fish. Bull. 98. 375 pp.

This Species Profile of the coho salmon (Oncorhynchus kisutch) is designed to give background material on virtually all aspects of the fish's life history. The coho is anadromous, swimming upstream from the ocean in fall to spawn. The fry hatch in the spring and outmigrate 1 to 2 years later. They usually spend two growing seasons at sea. They require clear, cold, well-oxygenated (<4 mg/l) stream water (~1 m/sec) for spawning and rearing, with a gravel substrate, adequate cover, and a food supply of insects, crustaceans, and fishes for the young. All populations of coho salmon are limited by the amount of suitable rearing area available. They are sought after in both sport and commercial fisheries, and are very sensitive, especially the early life stages in streams, to such human-made impacts as siltation, pollution, removal of cover, and barriers to migration.

Current management objectives of the State of Washington are toward MSH (maximum sustained harvest), with the treaty Indian tribes under the Boldt Decision (United States vs. State of Washington) having a legal right to 50% of the catchable allocation.